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In this work a generalization of the consistent histories approach to quantum 
mechanics is presented. We first critically review the consistent histories approach 
to nonrelativistic quantum mechanics in a mathematically rigorous way and give 
some general comments about it. We investigate to what extent the consistent 
histories scheme is compatible with the results of the operational formulation 
of quantum mechanics. According to the operational approach, nonrelativistic 
quantum mechanics is most generally formulated in terms of effects, states, and 
operations. We formulate a generalized consistent histories theory using the 
concepts and the terminology which have proven useful in the operational 
formulation of quantum mechanics. The logical rule of the logical interpretation 
of quantum mechanics is generalized to the present context. The algebraic structure 
of the generalized theory is studied in detail. 

I. INTRODUCTION 

This article is the outcome of an attempt to understand the relation of 
two seemingly completely different modem formulations of quantum mechan- 
ics. On the one hand we consider the insightful modem operational reformula- 
tion and generalization of quantum mechanics due to many authors. We refer 
the reader to the monographs by Davies (1976), Kraus (1983), Ludwig (1970, 
1972/1979, 1983), and Busch et  al. (1991, 1995), and references therein. On 
the other hand, we study the consistent histories approach and particularly 
Omnrs' logical interpretation of quantum mechanics. 

The operational approach is based on an analysis of the quantum mechan- 
ical measuring process and is formulated in terms of accompanying purely 
operational concepts: according to the operational approach nonrelativistic 
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quantum mechanics is most generally formulated in terms of effects, states, 
and operations and the accompanying notions like 'positive-operator-valued 
measures.' The operational approach incorporates many ideas from the older 
orthodox interpretations (Jammer, 1974; Primas, 1983; Scheibe, 1973); in 
particular the measuring process is considered to be of central importance 
in the foundations of quantum mechanics. 

In contrast, the history approach is the outcome of an effort to deal with 
quantum mechanics of single closed systems, i.e., systems which neither 
interact with their environment nor are exposed to measurements. In this 
approach the measuring process is not considered to be a fundamental notion, 
but rather a derived one. 

In this work we adopt a realistic, individual interpretation of quantum 
mechanics. Further, we will adopt a somewhat conservative point of view in 
that we will consider the operational approach as a physically fundamental 
and meaningful approach in the sense that its results and its range of applica- 
tions must be contained in (or derived from) every generalized formulation 
of quantum mechanics based on a realistic interpretation, in particular in 
the consistent histories formulation of quantum mechanics. Thus we will 
investigate whether the history approach to quantum mechanics can be formu- 
lated and generalized in terms of the notions and the concepts of the opera- 
tional formulation of quantum mechanics. 

The history approach to nonrelativistic quantum mechanics has received 
much attention in the last decade. The consistent histories approach to nonrela- 
tivistic quantum mechanics was inaugurated in a seminal paper by Griffiths 
(1984). Nonrelativistic quantum mechanics in its standard formulation is not 
a theory which describes dynamical processes in time, but it is a theory which 
gives probabilities to various possibilities. The history approach to quantum 
mechanics can be looked upon as an attempt to remedy this situation by 
introducing time sequences of possibilities as a rough substitute for dynamical 
processes. Nowadays there are two main approaches to research in this field. 
The first one is mainly due to Roland Omn~s, who uses histories as a 
framework for constructing a realistic and individual interpretation of quan- 
tum mechanics. The resulting logical interpretation is based on some simple 
logical rules which we will review below. It is thus fair to say that the logical 
interpretation is a purely epistemological interpretation. Histories are not 
necessarily considered to represent features belonging to physical reality and 
are not considered to be ontological models for the quantum system (most 
generally the universe) at hand, but are simply considered as a useful tool 
to talk about quantum systems (more precisely, in the logical interpretation 
histories are thought to represent the only meaningful assertions about a 
quantum mechanical system in the language of physics). 
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On the other hand, Gell-Mann and Hartle consider the history approach 
as a convenient setting to discuss the quantum mechanics of closed systems, 
i.e., most generally the universe (Gell-Mann and Hartle, 1990a-c, 1993, n.d.- 
a,b; Hartle, 1991, 1994). In this way they hope to circumvent some of the 
conceptual and mathematical difficulties inherent in quantum cosmology. 
They propose to use histories to describe the events that have taken place 
and that will take place in the universe. They pay special attention to what 
they call quasictassical domains. [They prefer now the term quasiclassical 
realm (Gell-Mann and Hartle, n.d.-b).] Loosely speaking, a quasiclassical 
domain is an exhaustive set of mutually exclusive coarse-grained alternative 
histories which can be ascribed probabilities and whose individual histories 
are described largely by alternative values of a limited set of quasiclassical 
variables (at a succession of times) which exhibit patterns of classical correla- 
tion in time subject to quantum mechanical fluctuations. In order to make 
pre- and retrodiction one needs information about the initial state of the 
universe and about past events. Since human sensory perceptions are rather 
limited, we can deal in general only with sets of alternative coarse-grained 
histories. Furthermore, it is only possible to ascribe probabilities to suitably 
coarse-grained histories provided some consistency conditions are satisfied. 
The research in this direction is faced with severe difficulties, as discussed 
by Dowker and Kent (1996) and Kent (1995). In this work we will not be 
concerned with the GeU-Mann-Hartle approach. 

Griffiths has recently proposed an interesting modification of these two 
approaches (Griffiths, n.d.). Grif-fiths essentially claims (among others) that 
inconsistent histories can be considered to be 'objectively' true separately 
even though inconsistent histories cannot be combined, either in constructing 
descriptions or in making logical inferences about them, i.e., even though 
assertions involving inconsistent histories are meaningless. 

Many of the central concepts of the modern operational formulation are 
foreign to the standard consistent histories approach and therefore the standard 
consistent histories approach is considerably and unnecessarily restricted in 
its range of applications. In the present work we formulate a generalized 
consistent histories theory using the terminology and the concepts which 
have proven useful in the operational formulation of quantum mechanics. 
The starting points of the present work are the fact that the observables 
in quantum mechanics have to be identified with positive-operator-valued 
measures and the reasonable claim that the consistent histories approach 
should take into account the full set of quantum mechanical observables. 

This wor k is organized as follows. In Section 2 we rewrite the formalism 
of the standard consistent histories approach to quantum mechanics in full 
generality in a mathematically precise way. Moreover, this section contains 
a brief (and inevitably incomplete) introduction to the operational formulation 
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of quantum mechanics based on the notion of effect and the concept of 
generalized observables. The first part of Section 2 contains a discussion of 
the interpretation of quantum mechanics underlying our generalized history 
approach, i.e., we discuss the meaning of concepts like 'observable,' 'prop- 
erty,' and the like. The reader should not expect a thorough philosophical 
analysis. On the contrary, we adopt philosophically somewhat naive but 
physically pragmatic points of view. In Section 3 some aspects of the logical 
interpretation of quantum mechanics are discussed. However, the treatment 
in Section 3 is by no means complete and only the aspects relevant for this 
work are discussed. An extensive discussion of the logical interpretation can 
be found in Omn~s' original work (Omn~s, 1988a-c, 1989, 1990, 1992, 
1994, 1995). In Section 4 we describe a generalized history theory, which 
generalizes the standard consistent histories approach. In Section 4 the alge- 
braic and order structures of our generalized history approach are investigated. 
The notion of decoherence functional is extended to the generalized frame- 
work and some of its elementary properties are discussed. It will turn out 
that so-called effect algebras or difference posets (D-posets) are the basic 
algebraic structure in our formulation. We explicitly construct the tensor 
product of two sets of effects on some Hilbert space in the category of effect 
algebras. The central result of Section 4.3 is the identification of the consistent 
sets of generalized histories on which the decoherence functional induces a 
probability measure and the formulation of the generalized logical rule of 
interpretation. Finally, in Section 4.4 we use our results to study the possible 
algebraic structures of more general quantum mechanical history theories not 
necessarily restricted to nonrelativistic theories. This can be viewed as a 
generalization of Isham's temporal quantum logic (Isham, 1994). In Section 
5 we discuss our results and present our conclusions. 

It must be emphasized that the representation and the interpretation of 
the consistent histories approach in this work might not be accepted by the 
authors cited. The present work solely reflects the inclination and the views 
of the present author. 

2. BASIC FACTS ABOUT CONSISTENT HISTORIES AND 
OPERATIONAL QUANTUM MECHANICS 

In this section we first review formal aspects of the consistent histories 
approach to quantum theory initiated by Griffiths and further developed by 
Omn~s, Gell-Mann and Hartle, Isham, and others. This section contains 
essentially known material. It can be read as a commentary on the standard 
texts. There is no general agreement in the literature, however, concerning 
the interpretational issues discussed in this section. Our treatment is based 
on a realistic and individual interpretation of probabilities in quantum mechan- 



Consistent Histories and Operational Quantum Theory 1585 

ics as outlined, e.g., in Busch et aL (1995), Omnrs (1992, 1994), and Popper 
(1982) (the views adopted in the present work differ, however, in some 
aspects from those in the work just cited). This interpretation has as one of 
its basic assumptions that there exists a definite physical reality, which exists 
independently of and changes independently of (human) observers. 

Remark I. Quantum mechanics as a probabilistic theory provides no 
solution of the problem of the 'actualization of facts.' This is the problem 
of why some events take place in the real world while others do not. In 
quantum measurement theory this problem occurs as the 'objectification 
problem' (Busch et al., 1991). 

In our interpretation we carefully distinguish between the mathematical 
formalism of a theory (the syntactical part of a theory) and the semantical 
part of a theory (the interpretation), which relates some abstract concepts of 
the mathematical formalism to the objects of physical reality which they 
represent. Only those parts of the mathematical formalism can be thought of 
as corresponding to elements of physical reality which are interpreted in the 
semantical part of the theory. 

A physical system is a part of physical reality which has to be regarded 
(in at least one respect) as a physical unit. The relevant aspects characterizing 
a physical system should not be affected by the interaction with other parts 
of physical reality (at least to a certain degree of accuracy). Every physical 
theory (in particular quantum mechanics) is concerned with the description 
(and understanding) of some physical systems. In this work we do not aim 
to give a precise definition of the notion 'physical system,' but rather adopt 
an abstract (but pragmatic) point of view and represent a physical system in 
the mathematical formalism by a collection of observables ('the observables 
of the system'). Observables are part of the semantical language of physical 
theories; they represent and systematize in the mathematical formalism possi- 
ble events which may occur in the physical systems and which can be 
described by the theory at hand. 

There is a longstanding debate in quantum physics about which entities 
in the formalism can be identified with the properties of a system and what 
structure the space of all properties is supposed to have. No agreement has 
been achieved; for some different points of view see, e.g., Onm~s (1994), 
Ludwig (1983), von Neumann (1932), Giuntini and Greuling (1989), and 
Cattaneo and Laudisa (1994). Most authors use the terminology introduced 
by von Neumann, who identified the projection operators with the possible 
'properties' of the quantum mechanical system (von Neumann, 1932). How- 
ever, Ludwig (1970, 1983) has stressed that the space of all projection opera- 
tors does not satisfy some conditions which may intuitively be associated 
with the notion of 'property.' In contrast, the author of the present work 
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believes that the problem of identifying the properties of a quantum mechani- 
cal system is a pseudoproblem. We simply identify the possible properties 
of a system with the propositions specifying the domain of values for some 
observable. That is, we view a system as a cartier of properties and as a 
bearer of dispositions. However, in the sequel we will use the phrase proposi- 
tion about a system or, following partly Birkhoff and von Neumann (1936), 
the term physical quality for this concept (actually this term was used in a 
different sense by Birkhoff and von Neumann) and not the term property nor 
the term pseudoproperty coined by Ludwig. What exactly we mean by physi- 
cal quality and physical property will be specified below. Whether or not 
the physical qualities and physical properties can be measured ideally or 
repeatedly (Busch et al., 1995) and whether or not the set of all qualities 
and the set of all properties satisfies some more or less intuitive axioms as 
claimed, e.g., by Ludwig, is of no concern to us. The notions of observable, 
physical quality and even the features which characterize a physical system as 
such are inferred on theoretical grounds; that is, which features characterize a 
physical system and what a physical quality is depend upon the theory and 
upon the interpretation we use. (However, it is clear that the question of 
whether a given theory with its accompanying notions of system and physical 
quality is a 'good' theory cannot be decided on purely theoretical grounds.) 

In this work we encounter the following point of view, which is essen- 
tially due to Griffiths (n.d.): We assert that for a quantum mechanical system 
there are several incompatible (or complementary) frameworks for its theoreti- 
cal description in terms of physical qualities and that there are several incom- 
patible (or complementary) frameworks for making logical inferences about 
physical qualities or about time sequences of physical qualities. We do not 
even claim that the possible frameworks for the theoretical description coin- 
cide with the possible frameworks for making logical inferences. (As we will 
see below, in our generalized history approach this is nevertheless the case.) 
All different frameworks (or in Griffiths' terminology topics of  conversation) 
are similarly objective. That is, the symmetrical treatment of several incompat- 
ible frameworks in the mathematical formalism of quantum mechanics is not 
broken in the interpretation nor (as is asserted in the interpretation) in the 
physical reality in the following sense: it is the whole objective physical 
situation (for instance, an experimental arrangement) which determines the 
framework that should be used for the description and reasoning. 

Thus we assert that for every physical system there are elements of 
physical reality which cannot be combined either in constructing a theoretical 
description or in making logical inferences about them. Such complementary 
elements of reality are not independent. The exact form of the framework 
for the theoretical description and for making logical inferences is specified 
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below in Rule 1 for the standard logical interpretation of quantum mechanics 
and in Rule 2 for the generalized logical interpretation developed in this work. 

We consider a quantum mechanical system S ~ without superselection 
rules represented by a separable complex Hilbert space H and a Hamiltonian 
operator H. Every physical state of the considered system is mathematically 
represented by a density operator on H, i.e., a linear, positive, trace-class 
operator on H with trace 1. We denote the set of all trace-class operators on 
H by ff(H) and the set of all density operators on H by ~-(H)~. The time 
evolution is governed by the unitary operator U(t', t) = exp[- i ( t '  - OH~h], 
which maps states at time t into states at time t' and satisfies U(t", t')U(t', t) 
= U(t", t) and U(t, t) = 1. 

In the familiar formulations of quantum mechanics the observables are 
identified with (and represented by) the self-adjoint operators on H and 
according to the spectral theorem observables can be identified with projec- 
tion-operator-valued (PV) measures on the real line; that is, there is a one- 
to-one correspondence between self-adjoint operators on H and maps (~: 
~(R)  ---> ~'(H) such that O(R) = 1 and •(Ui Ki) = ~ i  (~(Ki) for every pairwise 
disjoint sequence {Ki}i in ~(R)  (the series converging in the ultraweak 
topology). Here ~(R)  denotes the Borel or-algebra of R and ~ (H)  denotes 
the set of projection operators on H, i.e., self-adjoint operators P with P = 
PP. PV measures axe also called spectral measures. 

We adopt the following physical interpretation of the so-defined observ- 
ables: all meaningful propositions about the considered system specify that 
the value of some observable (~ lies in some set B ~ ~(R).  We also say that 
such a specification of the value of some observable represents a physical 
quality of the system or a proposition about a system; in one word, a proposi- 
tion is a speakable. All other propositions about the system in the formalism 
of the theory are considered as representing only syntactical statements. The 
same idea is often expressed in a modern language by saying that only 
observables represent the beables in the theory and that all other objects in 
the mathematical formalism have no beable status. We can state our assertion 
also as follows: beables represent the possible events that may occur in the 
physical system (Bell, 1987). 

Note 1. Beables as defined above are surely the preeminent concepts in 
the theory that may be thought of as corresponding to some elements of 
reality. We make no attempt to define what the term reality exactly means 
and we do not claim that beables are the only elements in the formalism 
which may be considered real. The term beable is, however, introduced to 
stress that there are several degrees of reality in a physical theory. By way 
of an example, the possible values of the coordinates of an elementary particle 
describe possible events in physical reality and thus have beable status in 
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the quantum mechanical description of the particle, whereas, say, the number 
of degrees of freedom of the same elementary particle is a somewhat abstract 
characteristic of the particle which has no beable status in the theory, but 
which may nevertheless be considered real. In particular, the state of the 
system has no beable status in the interpretation of quantum mechanics 
outlined here. The state of a system collects all necessary information of 
the past history of the system (e.g., preparation procedures) to compute 
probabilities for future events. In the words of Popper (1982), 'the real state 
of a physical system, at any moment, may be conceived as the sum total of 
its dispositions--or its potentialities, or possibilities, or propensities.' Thus 
we think of the state as an abstract concept in the syntactical part of the 
theory (i.e., in the mathematical formalism) characterizing the real physical 
system. To be not misunderstood: states are completely objective; even though 
we do not think of states as real properties of the physical system, we may 
nevertheless consider states as properties of the integral physical situation. 
Since quantum mechanics is a probabilistic theory, Gleason's theorem fixes 
the notion of state in the formalism of quantum mechanics (see below). 

The probability of a physical quality represented by the projection opera- 
tor P is in the state represented by the density operator p given by tr(pP), 
where tr denotes the trace in H. 

There is no agreement in the literature concerning the interpretation of 
this probability. According to a minimal operational interpretation it represents 
the probability that a physical quality is found in a measurement. 

At this point it should be stressed that one has to distinguish carefully 
between physical qualities and the associated projection operators. Several 
physical qualities may correspond to the same projection operator. However, 
from the operational approach to quantum mechanics (I"~aus, 1983; Ludwig, 
1983) it follows that different physical qualities corresponding to the same 
projection operator cannot be distinguished by performing yes-no experi- 
ments and thus can only collectively be considered to be true or false. For 
this reason in standard quantum mechanics the projection operators are said 
to represent properties of the system. 

Remark 2. In this work we adopt Popper's propensity interpretation of 
probabilities (Popper, 1959/1960, 1982). In the propensity interpretation the 
classes of experimentally indistinguishable physical qualities (represented by 
some projection operator) represent the "beables" and the probabilities are 
thought to express the tendencies in the behavior of the system. They are 
measures of the propensity or of the tendency of a possibility (i.e., a beable) 
to realize itself upon repetition. Probabilities are associated with a single 
system, in contrast to the usual frequency interpretation of probabilities, where 
probabilities are numbers characterizing ensembles of (similarly prepared) 
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systems. Nevertheless the probabilistic statements in the theory can be tested 
by actual sequences of measurements. Popper ascribes the priority for the 
propensity interpretation to a large extent to Land6 (1965). 

Note  2. A comprehensive and critical discussion of different possibilities 
to consistently interpret the term 'probability' can be found in the monographs 
by Popper (1982, 1994). In his discussion of quantum mechanics Popper 
discusses, besides the propensity interpretation of probability, various issues 
regarding the interpretation of quantum mechanics and other related areas of 
physics. However, although I believe that the propensity interpretation of 
probability is well suited for the consistent histories approach to quantum 
mechanics and for the logical interpretation, I do not wish to imply that I 
accept all of the assertions and claims in Popper (I 982, 1994). On the contrary, 
I believe that Popper's interpretation of quantum mechanics as a whole is 
physically incomplete and that something like the logical rule of interpretation 
has to be added to it in order to make it physically complete. 

According to standard quantum mechanics, physical qualities correspond 
to projection operators and observables to PV measures. However, as dis- 
cussed at length by Davies (1976), Kraus (1983), and Busch et al. (1991, 
1995), there is good reason to generalize the usual notion of an observable 
in quantum mechanics. These generalized observables have been developed 
and applied independently in various branches of physics, such as, e.g., 
stochastic quantum mechanics (Prugov~cki, 1992), quantum optics (Davies, 
1976), or even the (conceptual) foundations of quantum mechanics (Ludwig, 
1983). For a detailed motivation and physical justification for the introduction 
of generalized observables, we refer in particular to the recent lucid mono- 
graph by Busch et al. (1995). 

The positive and bounded operators F on H, satisfying 

0 < F _ < l  

are commonly called effects and the set of all effects on the Hilbert space 
H will be denoted by ~(H).  We further denote the set of all bounded, linear 
operators on H by ~(H) ,  the set of all positive (and hence Hermitean), linear, 
bounded operators on H by ~ ( H )  ÷, and the set of all projection operators 
on H by ~(H).  

I f H  is an infinite-dimensional Hilbert space, then the set of all projection 
operators ~ (H)  on H is weakly dense in ~(H)  (Davies, 1976). 

General i zed  observables  are now identified with positive-operator-val- 
ued (POV) measures on some measurable space (~ ,  ~), i.e., maps O: ~ --~ 
~(H)  with the following properties: 

• O(A) > O(0) for all A E ~.  
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• Let {Ai} be a countable set of disjoint sets in ~;  then O(Ui Ai) = 
~i O(Ai), the series converging ultraweakly. 

• O ( f ~ ) =  1. 

Generalized observables are also called effect-valued measures. Ordinary 
observables (associated with self-adjoint operators on H)  are then identified 
with the projection-valued measures on the real line R. 

Note 3. Notice that in general there is no unambiguous representation 
of generalized observables as self-adjoint operators on H. However, there is 
a one-one correspondence between maximal symmetric operators on H and 
POV measures on H (Busch et al., 1995). 

The set f~ represents the set of all possible values of the observable O 
and ~ represents the allowed coarse grainings in ~ .  Generalized observables 
which are not ordinary observables are often also called unsharp observables. 

Note 4. The term unsharp observable is used with different meanings 
in the literature; see, e.g., Busch et al. (1995). However, the term unsharp is 
somewhat misleading. Admittedly, some (but not all) generalized observables 
arise as smeared versions of ordinary observables. In general, however, gener- 
alized observables must not be considered as unsharp or limited counterparts 
of some underlying, more sharply defined observables, but rather as indepen- 
dent entities in their own right. 

According to Gleason's theorem, for every positive, normalized tr-addi- 
tive map p: ~ (H)  ~ [0,1 ], also called generalized probability measure, there 
exists a unique p e ~-(H)i ~ such that p(F) = tr(pF). (A map p: ~(H)  --~ [0, 
1] is called a-additive if for every countable collection {Ei} of elements of 
~ (H)  such that Xi Ei --< 1, one has P(~,i El) = Ei p(Ei) (convergence in the 
weak operator topology).) It also follows from Gleason's theorem that an 
effect-valued measure represents the most general notion of an observable 
compatible with the probabilistic structure of Hilbert space quantum mechan- 
ics. Gleason's theorem was first proved in Gleason (1957); a short proof can 
for instance be found in Maeda (1989). 

Generalizing our above terminology, we regard all propositions speci- 
fying the value of some (generalized) observable as (generalized) physical 
qualities. In order to discriminate physical qualities corresponding to ordinary 
observables from physical qualities corresponding to generalized observables, 
we will sometimes call the former 'ordinary physical qualities' and the latter 
'generalized physical qualities.' In the generalized approach to every physical 
quality there is associated one effect operator. 

Every physical quality represents some dichotomy (or binary alternative 
or yes-no alternative) at every instant of time. There are physical qualities 
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which are always true, e.g., the physical qualities asserting that the value of 
some observable lies somewhere (without further specification) in the space 
of its possible values. Such physical qualities will be pairwise identified and 
collectively denoted by 1. Similarly, physical qualities which are always false 
will also be pairwise identified and collectively denoted by 0. We will denote 
the set of all physical qualities (with this identification) of a quantum system 
b ° with corresponding Hilbert space H by ~(H).  Notice, that a (nontrivial) 
member p of ~(I-I) is a proposition specifying the value of some observable 
and is not an operator on H in some way or other related to the proposition 13. 

The effect operator p associated with a physical quality p will be denoted 
by p = ~(I9), thus defining a map ~: ~ (H)  ~ @(H). 

It is worthwhile to mention that in the operational approach to quantum 
mechanics states are defined as equivalence classes of preparing instruments 
of a system, where two preparing instruments are said to be equivalent if 
they cannot be distinguished by measuring binary alternatives (Kraus, 1983; 
Ludwig, 1983). Moreover, effects can also be defined as equivalence classes 
of measuring instruments performing yes-no measurements, where two mea- 
suring instruments are called equivalent if for every state both measuring 
instruments are triggered with equal frequencies. Since, however, every mea- 
suring process can be thought of as being composed of elementary yes-no 
measurements of physical qualities (at least in principle) (Beltrametti and 
CassineUi, 1981; Jauch, 1968) and since physical qualities represented by 
the same effect operator cannot be distinguished from each other by per- 
forming yes-no measurements, it follows that in quantum mechanics every 
pair of  physical qualities which are represented by the same effect operator 
must be considered equivalent: that is, in quantum mechanics one is not 
interested in single physical qualities, but in equivalence classes of  physical 
qualities. We will call this equivalence classes of physical qualities physical 
properties of  the physical system. It is reasonable to assume that physical 
properties of a quantum mechanical system are in one-to-one correspondence 
with effect operators (Kraus, 1983). Therefore in generalized quantum 
mechanics the effect operators represent the beables of  the theory in the 
mathematical formalism. In the standard formulation of quantum mechanics 
often only the projection operators are referred to as representing 'properties' 
of the quantum system [following a terminology introduced by von Neumann 
(1932)]. Thus effect operators are often referred to as representing so-called 
'unsharp properties.' However, in general, effect operators must not be consid- 
ered as unsharp or smeared counterparts of  some underlying, more sharply 
defined properties, but as independent entities in their own right. Since 
physical properties represented by effect operators can in general neither be 
measured ideally without disturbing the system nor measured repeatedly, one 
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may say, loosely speaking, that projection operators represent stable proper- 
ties and that all other effect operators represent unstable properties. 

Again the probability of some physical property F is in the state p given 
by tr(Fp). 

Summing up, throughout this paper we adopt the following conventions: 
by a physically meaningful proposition about a system we mean a statement 
(associated with some effect operator) specifying the value of a generalized 
observable; we also talk about physical qualities in this connection; aproposi- 
tion about a system is thus a statement in the semantical language of physics 
asserting the truth (or realization) of some physical qualities. By a physical 
property o f  a system we mean an equivalence class of physical qualities 
which cannot be distinguished by measuring binary alternatives. Physical 
properties are in one-one correspondence with effect operators. 

We now turn to the discussion of histories in standard nonrelativistic 
quantum mechanics, which, loosely speaking, are defined to be sequences 
of projection operators on H. In standard nonrelativistic quantum mechanics 
a history could altematively be defined as time sequence of physical qualities 
since (as already remarked above and as will become clearer below) different 
physical qualities corresponding to the same projection operator can only 
simultaneously be true. Thus we stick to the usual definition: 

Definition 1. A homogeneous history is a map h: R --) ~'(H), t ,-, hr. 
We call ti(h) := min(t ~ R lh, ~: 1) the initial and tf(h) := max(t ~ R Ih, 
~: 1) the final time of h, respectively. Furthermore, the support of h is given 
by d(h) := {t ~ RI ht ~: 1 }. If ~(h) is finite, countable, or uncountable, then 
we say that h is a finite, countable, or uncountable history, respectively. The 
space of all homogeneous histories will be denoted by ~(H) ,  the space 
of all finite homogeneous histories by ~nn(H), and the space of all finite 
homogeneous histories with support S by ~s(H).  

In this work we focus attention on finite histories. In the following we 
will identify every homogeneous history h with the string of its nontrivial 
projection operators, i.e., we write h ---- {h,k}~k~h ). 

For every finite subset S of R we can consider the Hilbert tensor product 
®t~sH and the algebra g~s~(H) of bounded linear operators on ®,~sH. It was 
pointed out by Isham (1994) that for any fixed S there is an injective (but 
not surjective) correspondence O's between finite histories with support S and 
elements of ~s~(H) given by 

Os: ~s(H) --~ ~s~(H), h ~-- {h,~}lk~s ~ ®,~s  htk 

The finite homogeneous histories with support S can therefore be identified 
with projection operators on ®,¢s H. The set of all projection operators on 
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®t~sH will in the sequel be denoted by ~'s~(H). However, not all projection 
operators in ~se(H) have the form trs(h) with h • ~s(H). 

If a homogeneous history vanishes for some to • R, i.e., h, o = 0, then 
we say that h is a zero history. All zero histories are collectively denoted by 
0, slightly abusing the notation. 

Definition 2. Let h, k • ~(H).  We say that k is coarser than h if h, - 
k, for all t • R and write h -< k. If, furthermore, h 4: k, then we write h < 
k. The set ~ (H)  equipped with the relation <--- is a partially ordered set. 

Definition 3. Two homogeneous histories h and k are said to be disjoint 
if there is some t • R such that h,k, = O. 

The identification of finite homogeneous histories with support S with 
projection operators on ®,~sH allows for the introduction of a much broader 
class of histories. To this end we recall the well-known fact that the set @(H) 
of projection operators on a Hilbert space H carries the structure of an 
orthocomplemented complete lattice, provided that for p~, P2 • ~(H)  one 
defines (a) Pt -< P2 ifpl projects on a subspace of the range of p2 (--< defines 
a partial order on ~(H)), (b) the join P l v  Pz ofpj and P2 to be the projection 
operator which projects on the smallest closed subspace of H which contains 
the subspaces p~H and p2H, (c) the meet pl ^ P2 of Pl and P2 to be the 
projection operator which projects on the intersection of pIH and p2H, and 
(d) the orthocomplementation "Pl of Pl to be the projection operator which 
projects on the complement o fp tH in H (Birkhoff and yon Neumann, 1936). 

Definition 4. Let S be a finite subset of R; then we call the space ~]{s(H) 
• = ~s~(H) of projection operators on ®~sH the space offinite inhomogeneous 
histories with support S. The space of all finite inhomogeneous histories with 
arbitrary support will be denoted by ~{fin(H) or by ~ , ( H ) .  

The lattice operations on ~s°(H) induce corresponding operations on 
the finite homogeneous histories in ~fi,(H), which are explicitly described 
in the following remarks. 

Remark 3. Let h, k • ~fi,(H) be two finite homogeneous histories; then 
the join h v k of h and k is defined to be the unique finite history with 

~(h)U~(k)(H) by support 6(h) U 6(k), which is represented in ® 

The history h v k may not be homogeneous. In this case h v k is an 
inhomogeneous history. The join v.ih/of any finite sequence {hi} of pairwise 
disjoint homogeneous histories is analogously defined to be the unique finite 
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history with support Ujf~(hj) which is represented in ~u°..~<h.)(H) by 

Remark 4. Let h, k ~ ~n,(H) be two finite homogeneous histories; then 
the meet h ^ k of h and k satisfies that (h ^ k) t : =  h, A kt is the projection 
operator on the intersection of the ranges of h t and k, for all t E R. The meet 
operation maps pairs of finite homogeneous histories to a finite homoge- 
neous history. 

Remark 5. Let h be a finite homogeneous history with support d(h); 
then -~h is the unique history with support d(h) which in ~ n ( H )  is represented 
by 1 - ®,~h)  h,. We call ~h the negation of h. The negation -~h of a finite 
homogeneous history h may be inhomogeneous. Obviously the negation 
satisfies h v -~h = 1 and h A ~h = O. It is clear that -~h is uniquely determined 
by these two conditions. 

Lemma 1. Let S be a finite subset of R; then the set ~s(H)  is an 
orthocomplemented complete lattice. 

Remark 6. The join, meet, and orthocomplementation operations on 
~s(H)  (where S is a finite subset of R) and on ~ n ( H )  are denoted by the 
same symbols (slightly abusing the notation). 

Isham (1994) indicates how to imbed ~£s(H) into an infinite tensor 
product of operator algebras and how to furnish the latter with a Hilbert 
lattice structure. 

Definition 5. Two (possibly inhomogeneous) finite histories h and k are 
said to be disjoint if h --< -'k, where -< is the partial order on ~£~h)u~k)(H). 

Lemma 2. Let h and k denote two disjoint finite histories; then h ix k 
= 0 .  

Definition 6. A history h E ~s(I-I) is called a simple history if h t is a 
projection operator on a one-dimensional subspace of H for every t E S. 

Lemma 3. For every finite S C R the space ~s~(H) can be generated 
from ~s(I-I) by the application of a countably infinite number of v, ^, and 
~ operations. 

This follows from the fact that, say, in the case of the tensor product 
H1 ® Hz the set {e,~ ® e,z} forms an orthonormal basis for HI ® Hz if and 
only if {e,t } and {e,,z} form orthonormal bases for H1 and Hz, respectively. 
A moment's thought shows even more, namely: 

Lemma 4. For every finite S C R the set @s~(I-I) can be generated from 
the set of all simple histories in ~s (H)  by the application of a countably 
infinite number of v operations. 



Consistent Histories and Operational Quantum Theory 1595 

Remark 7. For every finite S C R the meet, join, and orthocomplementa- 
tion operations on ~s~(H) induce a meet, join, and orthocomplementation 

® operation on ~fi,(I-I), respectively, which will be denoted by the same 
symbols. 

Definition 7. Let ~/denote a finite collection {hk} of histories in ~ , ( t - I ) .  
Then ~ is said to be disjoint if each pair of histories in ~ is disjoint. .~ is 
said to be complete if Vk hk ---- l. 

Furthermore, to every finite homogeneous history h e ~n . (H)  we associ- 
ate its class operator with respect to the fiducial time to, 

Cto(h) := U(t0, tn)htnU(tn, tn-I)htn_j "" U(t2, tl)hqU(tl, to) (1) 

-- U(to, ti(h))ht.(tn)ht._l(tn-O ""  hq(q)U(ti(h), to) (2) 

where we have defined the Heisenberg-picture operators 

htk(tk) := U(tk, ti(h))thtkU(tk, ti(h)) 

with respect to the initial time ti(h) of h. The class operators are extended 
to finite inhomogeneous histories by requiring that Cto is additive in the 
following sense: 

Cto(h v k) := Cto(h) + Cto(k) for h ^ k = 0 (3) 

C,o(~h):= 1 - C,o(h) (4) 

These definitions are compatible with the lattice-theoretic identities -~(h v 
k) = (-~h) ^ (~k) and -~(h A k) = (~h) v (-~k). Notice, that equation (4) is 
a consequence of equation (3). In the language of Birkhoff (1967), Cto is an 
operator-valued valuation on ~s~(H) for every finite S C R. It follows from 
a lemma in Birkhoff (1967, Chapter X.I) that equations (3) and (4) are 
equivalent to 

Cio(h v k) := Cto(h) + Cto(k) for every h, k with h ^ k = 0 (5) 

Equations (3) and (4) are motivated by the identities valid for all disjoint 
h, k E ~ ( H ) :  

h v k = h + k  

-~h = 1 - h  

The analogue of equation (5) for inhomogeneous histories which are not 
finitely generated is 

(i~=l) ~ ('Jiyll) C, 0 hi := C,o(hi) if hj ^ hi = 0 for every j (6) 
i = |  
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the series converging ultraweakly. It is clear that the left-hand sides of equa- 
tions (3) and (6) are well defined. This can be easily seen from Lemma 4 
and from the definition of the tensor product ®t~sH. We mention that the 
fiducial time to can be chosen completely arbitrary. 

By virtue of Lemma 4 it is therefore enough to know the class operators 
of every finite simple homogeneous history. 

Definition 8. Let the state of a quantum mechanical system at time to 
be given by the density operator p(t0). For every pair h and k of finite 
homogeneous histories we define the decoherence weight of h and k by 

dp(h, k) := tr(C,o(h)p(to)Cto(k) t) (7) 

The functional do: ~fin(H) × ~fin(H) "-'> C, (h, k) ~ do(h, k) will be called 
the decoherence functional associated with the state p. The decoherence 
functional is in an obvious way extended to finite inhomogeneous histories 
using equations (3) and (6). 

Lemma 5. Let h, h', and k denote finite histories. The decoherence 
functional d o satisfies: 

• do(h, h) E R and dp(h, h) >-- O. 
• do(h, k) = do(k, h)*. 
• dp(1,  ! )  = 1 
• dp(h v h', k) = do(h, k) + dp(h', k) for h A h' = 0. 
° dp(0, h) = 0 for all h. 

Now fix h and vary p in p~(h) := do(h, h). Then pp(h) is a positive, 
linear, bounded functional on 3"(H)~-. Therefore it follows from Gleason's 
theorem that there exists a unique effect F(h) ~ @(H) such that 

dp(h, h) = tr[pF(h)] 

Obviously 

F(h) = Cto(h)tCto(h) 

We call F(h) the effect associated with the finite history h. The map F: 
~fi,(H) ~ ~(H) is many-to-one and therefore information about h is lost 
when considering F(h) instead of h. 

Consistent Sets o f  Histories 

Definition 9. Let h and k be two disjoint histories in ~n (H) .  The histories 
h and k are said to be preconsistent with respect to the state p if Re dp(h, k) 
= 0. Any collection ~ of histories in @~,(I--t) is said to be preconsistent with 
respect to the state p if every pair of disjoint histories in q~ is preconsistent 
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with respect to the state p. Any collection ~ '  of histories in ~ , ( H )  is said 
to be consistent with respect to the state p if ~ '  is a Boolean algebra (with 
respect to the meet, join, and orthocomplementation in ~ , ( H ) ;  see Remark 
7; and with unit 1~,) and if ~ '  is preconsistent with respect to the state p. 

Note that our above terminology differs somewhat from the terminology 
used by other authors. Further, some authors call a pair h, k of histories 
weakly decoherent if it satisfies Re do(h, k) = 0 and mediumly decoherent 
if it satisfies do(h, k) = 0. Other related notions of decoherence and consistency 
can be found in the literature; see, e.g., Gell-Mann and Hartle (n.d.-b), 
Finkelstein (1993), and Zeh (n.d.). The condition Re do(h, k) = 0 is interpreted 
in physical terms by saying that the events h and k have vanishing interference 
in the state p. 

The notion of consistency is important because it is the key to a 
probability interpretation of the numbers do(h, h) for some (pre-)consistent 
sets of histories. 

Let us recall that usually a probability space is defined to be a triple 
(~ ,  ,~, p), where ~ is an arbitrary set, ,~ is a Boolean or-algebra of subsets 
of I I ,  and p is a probability measure on ~/. This can be generalized as follows: 

Definition 10. Let ~ be a partially ordered set and ~ C ~ be a Boolean 
lattice. A nonnegative valuation m: ~ --) R + on ~ which is additive, 

m °tk = ~=l ~] m[ak] if Or. k A \ i= 10~i = 0 for every k < N 

is called afinite measure on ff~. If ~ is a Borei lattice, then N may be taken 
to be oo. In this case m is or-additive. If ff~ is not a Borel lattice, then N is 
always finite. If furthermore m[ 19] = 1, then m is called a probability measure 
on ~ and the triple (~,  ~ ,  m) is called a probability lattice. 

A Borel lattice is a Boolean or-lattice (Birkhoff, 1967). 

Theorem 1. Let q~ C ~ . ( H )  be a Boolean lattice. If ~ is preconsistent 
with respect to the state p, then the triple ( ~ . ( H ) ,  c~, Po) is a probability 
lattice, where pp is defined by 

do(h, h) 
Pp: ~ ---) R+' Po (h) :=  do(l~, t,~) (8) 

The proof if straightforward. 
In the literature it is often tacitly assumed that the preconsistent set of 

histories under consideration forms (or generates) a Boolean lattice so that a 
probability interpretation of the diagonal values of  the decoherence functional 
makes sense. 
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The probability defined by equation (8) can for finite homogeneous 
histories be interpreted as a conditional probability, namely as the probability 
of the sequence of the propositions ht I = htk . . . . .  h t k_ j ,  given that the sequence 
of propositions htk-i-~ . . . . .  hto is realized. 

Lemma 6. Let (~n (H) ,  ~ ,  Po) be a probability lattice, where pp is defined 
by equation (8); then for all h, k ~ ~:  

• 0 < p o ( h )  <- 1. 
• pp(h v k) + pp(h A k) = pp(h) + pp(k). 
• pp(h) <-- pp(k) if h -< k. 

Corollary I. Let ~ C @~,(H) be a Boolean lattice. Then qg is a preconsis- 
tent set of histories w.r.t, the state p if and only if every pair h, k of histories 
in qg satisfies 

dp(h v k, h v k) + dp(h A k, h ^ k) = dp(h, h) + dp(k, k) (9) 

Remark 8. We notice that dp also induces probability functionals on sets 
of histories which are not Boolean lattices. Let qg be a preconsistent set of 
pairwise disjoint histories; then rap: ~ ---> R ÷, rap(h) := dp(h, h ) / ( E ~  do(k, k)) 
is an additive functional on ~ and rap(h) can be interpreted as the probability of 
h ~ ~.  However, since % generates a Boolean sublattice of ~fi,(H) on which 
d o induces a probability measure extending mp, it is enough to consider 
Boolean algebras of histories. 

3. THE LOGICAL I N T E R P ~ T A T I O N  OF QUANTUM 
MECHANICS 

The logical interpretation of (nonrelativistic) quantum mechanics is an 
epistemological interpretation of quantum mechanics. This interpretation is 
mainly due to Roland Omn~s. In this section we first briefly outline some 
basic assertions of the logical interpretation of quantum mechanics. The 
logical interpretation as discussed in this section and Section 2 differs in 
some minor details from that in Omn~s' original work (Omn~s, 1988a-c, 
1989, 1990, 1992, 1994, 1995). 

The logical interpretation is a realistic interpretation of quantum mechan- 
ics and thus the discussion of Section 2 applies here; see in particular the 
first part of Section 2. In the logical formulation the most general propositions 
about a quantum mechanical system which have a physical meaning are 
identified with finite (or at least countably infinite) history propositions. Other 
statements about a system which cannot be cast into the framework of history 
propositions are not considered to be meaningful and hence are excluded 
from consideration. A probability is associated with every history proposition 



Consistent Histories and Operational Quantum Theory 1599 

in a consistent set. The set of all probabilities for all history propositions 
specifies the state of the system. In the Hilbert space formulation of quantum 
mechanics the state of a system is characterized by a density operator and 
the probabilities are given by equation (8). The set of all meaningful proposi- 
tions about some system in terms of histories together with their corresponding 
probabilities [given by equation (8)] is considered to be the most general 
conceivable knowledge about a particular quantum mechanical system. The 
probabilities of histories are considered to be objective entities in their own 
right, i.e., numbers associated with history propositions describing single 
systems, and not only as quantities approximately equal to frequencies in a 
series of measurements. We adopt again Popper's propensity interpretation 
for these probabilities; see Remark 2. 

In our terminology introduced above the history propositions represent 
the (temporal) beables (in the sense of propensities) and the probabilities are 
therefore thought to express the (temporal) tendencies in the behavior of the 
system. The probability measure on a consistent Boolean algebra of history 
propositions induced by the decoherence functional according to Theorem 1 
defines in this consistent Boolean algebra two logical relations, namely an 
implication and an equivalence relation between histories. A history proposi- 
tion h is said to imply a history proposition k if the conditional probability 
pp(kl h) =- pp(h ^ k)/p~(h) is well defined and equal to one. Two history 
propositions h and k are said to be equivalent if h implies k and vice versa. 

The universal rule of interpretation of quantum mechanics can now be 
formulated as follows: 

Rule 1. Propositions about quantum mechanical systems should solely 
be expressed in terms of history propositions. Every description of an isolated 
quantum mechanical system should be expressed in terms of finite history 
propositions belonging to a common consistent Boolean algebra of histories. 
Every reasoning relating several propositions should be expressed in terms 
of the logical relations induced by the probability measure from Theorem 1 
in that Boolean algebra. 

This logical rule has to be understood as a semantical rule which system- 
atizes the language of quantum mechanics. It once and for all makes sure 
whether a reasoning or an implication is allowed or not. This is exactly what 
one expects from a rule building the basis of a complete interpretation. The 
logical rule can also be applied to the hitherto highly problematic retrodictive 
reasoning in quantum mechanics. 

The causal relationship between different histories is coded into a logical 
relationship. This has nothing to do with introducing 'a new empirical kind 
of metalogic,' as is sometimes claimed (Zeh, n.d.), but simply introduces a 
convenient way of speaking: the logical rule is neither regarded as a scientific 
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law of human thought nor intended to modify the logical structure of our 
mathematical reasoning, but it is rather confined to the systems of quantum 
mechanical propositions to which probabilities may be ascribed by the theory. 

It should be noticed that in the above formulation there is neither a 
preferred history nor a preferred Boolean algebra in the theory which may 
be associated in some way with the 'actual facts' observable in the real world. 
Omn~s does not claim to have solved the problem of actualization of facts 
or the objectification problem in the quantum measurement process. On the 
contrary, Omn~s (1992, 1994) argues that it is neither feasible nor necessary 
that quantum mechanics provide an explanation for the process of actualiza- 
tion of facts. Therefore the criticism in this direction raised by Zeh (n.d.) 
is unfounded. 

A few remarks are in order here. First, I neither claim nor presuppose 
that quantum mechanics is the ultimate universal theory in terms of which 
every natural phenomenon can eventually be described. This may or may 
not be the case. No conclusive decision on this question can be made at present. 

Note 5. Some authors explicitly or implicitly postulate the universality 
of quantum mechanics cast into the framework of consistent histories. 
According to this postulate the formalism of nonrelativistic quantum mechan- 
ics (cast into the framework of consistent histories) can without significant 
changes be applied to the whole universe and every (approximately) isolated 
part of it. A globally defined notion of 'time translation' is needed simply 
to formulate such a theory. However, in general curved spacetimes there is 
no such globally defined preferred notion of 'time translation.' Thus this 
postulate needs further justification before it can be accepted as a generally 
valid fundamental principle of physics. Intimately related to this question is 
the question of whether the notion of the initial state of the universe is 
meaningful at all. All these nontrivial problems can presumably be decided 
only on the basis of a not-yet-existing quantum theory of gravity. 

Accordingly, we formulate the above Rule 1 modestly only for quantum 
mechanical systems, i.e., systems which can indeed be described by quan- 
tum mechanics. 

Second, in his work Omnrs identifies the possible 'properties' of a 
system at a fixed instant of time with projection operators. As already dis- 
cussed in Section 2, we do not use this terminology in the present work. 

Third, Omn~s has a good deal to say about decoherence by the external 
environment, about recovering classical physics and 'common sense' from 
his approach, and about the notion of truth in quantum mechanics and related 
questions. It is beyond the scope of the present work to discuss these issues 
and thus the reader is referred to Oran,s (1990, 1991, 1992, 1994, 1995), 
Dowker and Kent (1996), and Zeh (n.d.). Concerning the notion of truth, we 
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recall that in the present work we adopt essentially Griffiths' point of view 
(Griffiths, n.d.). 

Fourth, it is sometimes claimed that in realistic and individual interpreta- 
tions of quantum mechanics it is possible to say that complementary physical 
qualities of a quantum system have at every instant of time definite values 
(Popper, 1982). This claim can be shown to have paradoxical consequences 
and is indeed forbidden by Rule 1. 

4. GENERALIZATION OF THE CONSISTENT HISTORIES 
APPROACH 

4.1. Motivation 

One drawback of the consistent histories formalism in its standard formu- 
lation is that the possible physical qualities of a physical system at any 
particular instant of time are restricted to ordinary physical qualities repre- 
sented by projection operators. The introduction of histories is usually moti- 
vated by saying that everything that can meaningfully be said about a quantum 
mechanical system can be expressed in terms of time sequences of one-time 
propositions about the system. As discussed above, in the usual formulation 
of quantum mechanics one-time propositions are identified with one-time 
physical qualities, which are represented by projection operators, so that 
histories are thought of as being correctly represented by time sequences of 
projection operators. However, as a matter of fact general physical qualities 
in quantum mechanics have to be represented by effects. Projection operators 
represent only special physical qualities in quantum mechanics. 

Omn~s asserts that the results of measurement theory can be deduced 
from the consistent history approach. Similar assertions can also be found 
in Griffiths (1984). In particular, he argues that in a series of measurements 
of some proposition (represented by a projection operator or a history proposi- 
tion) the empirical frequencies of the results are approximately given by the 
probabilities associated with that proposition. However, Omn~s restricts his 
discussion to a very limited class of measurement situations, see Chapter 8 
in Omn~s (1994). First, he considers only measurements of ordinary observ- 
ables with discrete eigenvalue spectrum, and second, only unitary measure- 
ment interactions which transform eigenstates of the measured observable 
into eigenstates of the same eigenvalue. In the language of Busch et  al. ( 1991) 
Omn~s considers only normal unitary von Neumann (pre-)measurements. 
However, the modem quantum theory of measurement covers much more 
general measurement situations, specifically measurements of generalized 
observables (Busch et al., 1991). 
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Note 6. It follows from a theorem by Ozawa (1984) that as a matter of 
principle the consistent history approach in its standard formulation is unable 
to cover measurements of continuous observables. The restriction of the 
discussion of measurement theory to ordinary discrete observables in Omn6s 
(1994) is therefore not only a matter of convenience. Continuous observables 
can only be dealt with after introducing a discrete reading scale. That is, 
continuous observables have to be replaced by discrete coarse-grained observ- 
ables. However, such a procedure does in general manifestly destroy invari- 
ance properties of the continuous variables. 

The interaction between the measurement apparatus and the measuring 
object in real measurements usually takes place during a finite time interval 
and cannot be associated with a fixed point of time. Further, many measure- 
ments have only a finite precision ('unsharp measurements') and cannot be 
considered to be measurements of physical qualities represented by projection 
operators or to be sequences of measurements of physical qualities represented 
by history propositions. As discussed by Ludwig (1983), Davies (1976), and 
Busch et al. (1991), the physical quality measured in general measurement 
situations has to be represented by some effect operator. However, the above- 
formulated universal logical Rule I forbids predictions for or even talk about 
results from such unsharp measurements and also forbids conclusions from 
them. This state of affairs is clearly unsatisfactory. Thus we feel that Omn~s' 
logical rule has to be extended to cover also more realistic measurement 
situations. 

The question arises whether the logical interpretation can be generalized 
such that generalized physical qualities can be dealt with and such that the 
more general measurement situations can be described by the consistent 
history approach to quantum mechanics. 

Since projection-valued measures represent observables which can be 
measured ideally and repeatedly (at least in principle) and since effect-valued 
measures represent observables which in general cannot be measured ideally 
and repeatedly, one might be tempted to reject this argument and to argue 
apologetically that in the consistent history approach a quantum system is 
described by (and only by) the set of its 'properties' (which are usually 
identified with projection operators) which are asserted to be the fundamental 
ingredients in the description of quantum systems. According to this line of 
thought other (unsharp) observables are not fundamental and thus do not 
need to be taken into account. However, we have already argued against this 
attitude in Section 2 and will not repeat our arguments here. It has been 
pointed out by Busch et al. (1989) that unsharp observables are 'far from 
being mere imperfections' and that this point of view 'amounts to a severe 
restriction of the measurement theoretic possibilities of quantum mechanics. 
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For instance one could not interpret the Stern-Gerlach experiment as a 
measurement of a spin observable at all.' Here of course a real Stern-Gerlach 
experiment is meant and not one of its idealized textbook versions. The 
reader is referred to the lucid monograph by Busch et al. (1995). 

One may also argue that Naimark's theorem [as stated, e.g., in Busch 
et aL (1995)] implies that only PV measures need to be taken into account 
since POV measures can be replaced by PV measures on a larger Hilbert 
space I:I. [Naimark's theorem states that every maximal symmetric operator 
on a Hilbert space H is the restriction (to H) of some self-adjoint operator 
on a larger Hilbert space I:I D I-I.] However, the Hilbert space I:I has in 
general no direct physical interpretation, and even if it has, then it typically 
represents the environment of the considered system or a measuring apparatus. 
In any case the PV measures on the Hilbert space I:I in general cannot 
be interpreted as describing solely the system under consideration and the 
projection operators in the range of the PV measures cannot in general be 
thought of as representing properties of the system (e.g., when I:I describes 
a measuring situation on H, then typically the PV measures arising from POV 
measures on H represent pointer observables of the measuring apparatus). 
Therefore POV measures have to be considered as the observables in the 
theory and the question of the status of generalized observables and of the 
corresponding generalized physical qualities in the consistent history 
approach cannot be avoided. 

In summary, we conclude that a generalization of the standard consistent 
histories approach is needed for the following reasons: First, the notion of 
observable in the standard consistent histories scheme is restricted to the 
class of ordinary observables, and second, it is not possible to describe 
realistic measurements in the language provided by the standard consistent 
histories theory. It is the aim of this section to generalize the consistent 
histories approach appropriately and thereby get rid of these drawbacks. In 
the first part of this section we construct the generalization of the consistent 
histories theory and of the logical interpretation for nonrelativistic quantum 
mechanics. At the end of this section we study the consequences of our 
results for the structure of more general temporal history theories in the spirit 
of Isham (1994). In Section 5 we will furthermore briefly argue that our 
generalized history approach incorporates in a natural way histories of 'quasi- 
projectors' and that we can dispose of using approximate consistency 
conditions. 

4.2. The Space of Effect Histories 

As discussed above, the equivalence classes of physical qualities of a 
system are the objects in the theory which are interpreted to represent possible 



1604 Rudolph 

events of physical reality. Thus in order to make pre- and retrodiction one 
has to study effect histories, i.e., sequences of effects on H. 

Definition 11. A homogeneous effect history is a map u: R --) ~(H),  t 
u,. The support of u is given by ~(u) := {t ~ R lu, 4: I}. If ,~(u) is 

finite, countable, or uncountable, then we say that u is a finite, countable, 
or uncountable effect history, respectively. The space of all homogeneous 
effect histories will be denoted by E(H), the space of all finite homogeneous 
effect histories by Efin(H), and the space of all finite homogeneous effect 
histories with support S by Es(H). All homogeneous effect histories for which 
there exists at least one t ~ R such that u, = 0 are collectively denoted by 
0, slightly abusing the notation. 

Remark 9. Let Gr be a finite set with r elements and supplied with two 
binary operations (free meet and free join) which will be denoted by ^fr and 
vf,, respectively. Finite polynomials in Gr can be built from elements of Gr 
by at most finitely many applications of Af~ and vfr On the space of all finite 
polynomials in Gr a congruence relation is defined by imposing the algebraic 
identities valid in every lattice (Birkhoff, 1967). The free lattice ~(G~) gener- 
ated by Gr is the quotient space of the space of all finite polynomials in G~ 
by this congruence relation. Now let G~ be a set with ~ elements, N any 
cardinal number. The free lattice ~(G~) generated by G~ can be constructed 
as follows: for any finite subset T C G~ one has constructed ~(T). Let T 
and S be two finite subsets of G~ satisfying T C S; then the canonical 
embedding "qTs: T --* S can be extended to a monomorpbism of free lattices 
~rs: ~(T) ---) ~£(S) (Birkhoff, 1967, Theorem VI.16). Define 

:= u Y(T) 
TC GI~ 
T finite 

Two elements gl ~ ~(Tl) and g2 ~ ~(T2) (T1 and T2 finite) are equivalent 
if there is a TI2 C G~ such that T1 C Tl2 and T2 C Ti2 and ~r~r~2(gl) = 
~r2r~2(g2). The free lattice ~£(G~) generated by Gs is now the quotient space 
of ~ modulo this equivalence relation. It is easy to show that the lattice 
operations on 5~(T) induce the structure of a lattice on ~(G~). The lattice 
operations on Y(Gs) will be denoted by A~ and v~e. More information about 
free lattices and free Boolean algebras can be found, e.g., in the monograph 
by Birkhoff (1967). 

It is not clear at all how to define the meet and the join of two effect 
histories. Therefore the notion of inhomogeneous effect history cannot be 
defined in a natural way compatible with the partial ordering on @(H). But 
we can define as follows: 
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Definition 12. The free lattice generated by Enn(H) will be denoted by 
~£(Enn(H)). The meet and the join operations in ~(En,(H))  will be denoted 
by ^~e and v~e, respectively. 

Remark 10. We can define a partial order on En,(H). For tq, u2 E Enn(H) 
we set u~ -< u2 if (ul)t <-- (u2), for all t E R and say that u2 is coarser than 
u,. This partial ordering induces partially defined meet and join operations 
(denoted by ^ and v) on Eei,(H). Every finite polynomial in ~(Erln(H)) can 
be transformed in equivalent polynomials by inserting the identifications u~ 
v~e u2 = ut v u2 and u~ A.~e U2 = U~ ^ U2 whenever the right-hand sides are 
well defined in En°(H). This defines an equivalence relation --E on ~(Enn(H)). 
It is clear that the physically interesting objects are the --E-equivalence classes 
in the quotient space ~(En,(H))/--E. By construction --E is a congruence 
relation on ~£(Enn(H)). [For the notion of congruence relation see, e.g., 
Birkhoff (1967) and Skornjakov (1977).] The --E-congruence class of u 
E~.(H) will be denoted by ~(u). For u E ,~IE C ~(E~.(H)) we write ~'a(u) := 
{u' E ~llu '  ~E U} and ~(Pl) := {~(a)la e ~l}. 

Definition 13. The quotient space ~(En,(H))/--E is called the space o f  
finite inhomogeneous effect histories and will be denoted by ]~nn(H). A finite 
inhomogeneous effect history induces a map fi: R ~ ~ (~ (H) ) /~E ,  t ,-. ~(u),, 
but not vice versa. The support of t~ is given by 6(fi) := {t ~ R I t~t =/= 1 }. 
The space ]~(H) of general inhomogeneous effect histories and the space 
t~s(H) of inhomogeneous effect histories with finite support S are defined 
analogously. 

For homogeneous finite effect histories u we define the class operator by 

C,o(U) := U(to. t~).j~t~U(t~, t~_l)v/~t~_, "'" U(t2. fi)x~t,U(ti, to) (10) 

= U(to. t~(u))v/-~t.(t.) ux/-~._~(t.-,) "'" .f~t~(t,)U(t,(u). to) (11) 

where we have defined the Heisenberg-picture operators 

v/-~tk(tk) := U(tk, ti(U))+,fu-~tkU(t,, ti(u)) 

with respect to the initial time t~(u) of u. 
For every pair u and v of finite homogeneous effect histories we define 

the decoherence weight of u and v by 

dp(u, v) :=  tr(C,o(U)p(to)Cto(V)*) (12) 

The functional dp: En,(H) × Eei,(H) --> C, (u, v) ~ d~(u, v) will be called 
the decoherence functional associated with the state p. There immediately 
arises a serious difficulty with this decoherence functional. At first sight it 
seems difficult (if not impossible) to construct a natural mathematical structure 
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on the space of effect histories such that the decoherence functional is additive 
in both arguments. Without this structure a consistency condition generalizing 
equation (9) cannot even be formulated and an interpretation of do(u, u) as 
probability seems to be impossible. (We will see below that the decoherence 
function induces a probability functional on some sets of  effect histories 
on which the decoherence functional is not additive.) These questions are 
investigated in the next subsection. 

Note 7. It is straightforward to generalize the notion of linearly positive 
history introduced by Goldstein and Page (1995) and to introduce linearly 
positive effect histories and the like. However, since the physical significance 
of the Goldstein-Page condition remains somewhat elusive, we will not 
consider it in this work. 

4.3. Consistent Effect Histories and the Generalized Logical Rule 
of Interpretation 

lsham (1994) has studied the logicoalgebraic structure of the standard 
consistent histories approach and has discussed generalizations of this struc- 
ture as models for more general history theories which may have applications 
to quantum space-time theories. It is the aim of  this subsection to discuss 
this line of thought from the point of view of our generalized histories 
involving effects and to use our results to generalize the logical interpretation 
to the present framework. We start with some important definitions. 

Definition 14. A difference poset or D-poset is a partially ordered set 
D with greatest element 1 and with a partial binary operation e :  D2 ~ D, 
where D2 C D X D, such that: 

• b e a is defined if and only if a -< b for all a, b e D. 
• b e a < _ b f o r a l l a < _ b .  
• b e ( b e a ) = a f o r a l l a < _ _ b .  
• a < _ b < _ c ~ c e b < _ c O a a n d ( c e a ) e ( c e b ) = b e a .  

Difference posets were introduced by K6pka and Chovanec (1994) and 
were further studied by K6pka (1992), DvureEenskij and Pulmannov~i (1994a- 
c), Dvure~enskij (1995), and Pulmannov~i (1995). 

Definition 15. A set D with two special elements 0, 1 ~ D supplied 
with a partially defined associative and commutative operation G: D~ ~ D, 
where D~ C D X D, is called an effect algebra if: 

• For every a E D there exists a unique a '  ~ D such that a ~) a '  is 
defined and a • a '  = 1. 

• If 1 ~3 b is defined, then b = 0 for all b ~ D. 
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An effect algebra D is called an orthoalgebra if furthermore 

• If b G b is defined, then b = 0 for all b e D. 

Effect algebras were introduced by Foulis and Bennett (1994). Whenever 
a G b is well defined for a, b E D, then we write a _L b. Let (D, O) be a 
D-poset. Define 

a G b :  = 1 e ( ( l  O a )  O b )  

whenever the right-hand side is well defined. Then E) is a well-defined partial 
binary operation on D and (D, El)) is an effect algebra. Conversely, let (D, 
G) be an effect algebra. Define 

b ~ a ' = ( a G b ' ) '  

whenever the right-hand side is well defined. Then O is a well-defined 
partially binary operation on D. Further, define a <-- b for a, b ~ D if there 
exists c e D such that c 3_ a and a G c = b. Then (D, 8 )  is a D-poset. 
Therefore the notions of D-poset and effect algebra are equivalent and we 
will use both terms synonymously in the following. 

Definition 16. A finite subset {al, az . . . . .  a,} of a D-poset (D, G) is 
said to be G-orthogonal if ~,=l  ai := al G az G "'" G a,  can be defined 
recursively. In this case Gi%1 ai is called the G-sum of {a~, a2 . . . . .  an}. In 
particular, for every n e N, we define an :=  na := G,-"=t a for all a ~ D 
for which the right-hand side is well defined. A G-orthogonal subset {a~, 
a2 . . . . .  an} of a D-poset D is said to be complete if G~'=I ai = 1. The family 
of all G-sums of subsets of {al, a2 . . . . .  an} will be denoted by G {al, a2, 

• . . ,  a n } .  

Furthermore, let Do C D; then the set of all well-defined finite G-sums 
of elements of Do will be denoted by G Do. 

Since G is commutative and associative, G~=I ai is indeed well defined. 

Remark 11. If {al, az . . . . .  an} is a finite, complete, G-orthogonal subset 
of a D-poset (D, G), then (G{al, a2 . . . . .  a,}, G) is itself a D-poset. 

Remark 12. The set @(H) of  all effect operators on a Hilbert space H 
[with the scalar product denoted by (', -)] can be organized into a D-poset 
by defining a partial ordering and a partial binary operation O on D by A 
-<Bi f (Ax ,  x)<<-(Bx, x) f o r a l l x  ~ H a n d C = B O A i f ( B x ,  x ) -  (Ax, x) 
= (Cx, x) for all x E H. 

Definition 17. Let (D, G) be a D-poset. A probability measure on D is 
a mapp:  D --~ R + satisfying p(1) = 1 and p(a G b) = p(a) + p(b) whenever 
a G b is well defined. 
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We next summarize the general axioms for a generalized quantum theory 
based on histories as stated by Isham (1994). According to Isham, the algebraic 
structure underlying the generalized quantum mechanics of  histories consists 
of the following ingredients: 

1. The space of history propositions 1I. Isham and Linden (1994) suggest 
that the minimal useful mathematical structure on H is that of an orthoalgebra. 
One may also consider the case that 1I is an orthocomplemented lattice or 
has an even stronger structure (e.g., a complete orthocomplemented lattice). 
[Pulmannov~i (1995) proposed that the space of  all histories in a generalized 
quantum theory may admit the structure of a D-poset. In the present work a 
physical justification of  this proposal is given.] 

2. The space of decoherence functionals. A decoherence functional is 
a map d: Lt X 1I --~ C which satisfies for all c~, cd, 13 ELI:  

• d(a, a) ~ R and d(cx, a) -> 0. 

• d ( a ,  13) = d(13, a ) * .  
• d ( 1 , 1 ) =  I. 

• d(0, a) = 0, for all a.  
• If LI is an orthoalgebra (or more generally an effect algebra), then 

d(al 0 et2, 13) = d(ot 1, 13) + d(a2, 13) 

for all a l ,  a2, 13 ~ Lt with al  _1_ a2. If II is a lattice, then 

d(a  t v a2, 13) = d(al,  13)+ d(ot2, [3) 

for all cq, or2, 13 ~ lit with eq 3_ a2. 

3. The physical interpretation of the above axioms is the same as in the 
case of the standard consistent history formulation. One can define (pre- 
)consistent sets of histories and interpret d(a,  a )  as the probability of the 
history a. 

Besides the structures of the space of histories and the space of decoher- 
ence functionals, which are believed to be present also in more general history 
theories than nonrelativistic quantum mechanics, Isham (1994) also describes 
structures arising in the history formulation of nonrelativistic quantum 
mechanics which may be an artefact of that theory and may be meaningless 
in more general quantum history theories. 

4. The space OR of history filters or homogeneous histories: 
• °R is a partial semigroup with composition law o. It satisfies ot o 1 

= a a n d a o 0  = 0 f o r a l l a  ~ OR. If a o13 is defined, t h e n a o 1 3  
-~- Or. A 13. 

• OR is a partially ordered set with a unit 1 and a null history 0. The 
partial order is denoted by --<. 
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• On ~ an operation of  meet, denoted by ^, is defined which satisfies 
1AOL = eL and 0 ^ c~ = 0 for all cx ~ ~ .  

• There exists an embedding -r: ~ ---> H, i.e., "r(l.t) C H. 
• L[ can be generated from • by the application of a finite or countably 

infinite number of the algebraic operations defined on H. 

Clearly, the axioms for °lt have to be modified when taking into account 
homogeneous effect histories. We will return to this point below. The defini- 
tion of  a semigroup will also be given below. 

5. The space of  temporal supports 9O. 
• 5° is a partial semigroup with unit. 
° There exists a semigroup homomorphism K: ~ ~ 5f such that K(1) 

= K(O) = 1 ~ ~. 

9 o may contain only one element 9O = { 1 }. 

In the standard history approach to quantum mechanics we have the 
following identifications: 9O is the space of  all finite subsets of  R and ~ := 
~t~o(H). Isham's axioms, as stated above, are not the most general structure 
possible. There is great freedom to add further axioms to the list or to remove 
some (note that we have already omitted some of Isham's axioms). As 
discussed in Section 2, finite homogeneous histories can be identified with 
projection operators on ®t~sH in a natural way. One aim of  this subsection 
is to examine to what extent Isham's results can be extended to our generalized 
effect histories and to explore its consequences for more general history 
theories. To this end the concept of  the tensor product of  effect algebras is 
of utmost importance. The tensor product of  a pair of  D-posets is defined 
by a universal mapping property (Dvure~enskij, 1995). 

Definition 18. Let Dl, D2 . . . . .  Dn, and L denote D-posets. 
• A mapping d~: Dl --> L is said to be a morphism if (i) ~b(1) = l and 

(ii) a 3- b implies ~b(a) t dp(b) and ~b(a • b) = d~(a) ~ ~b(b) for 
a l l a ,  b E Dr. 

• A mapping ~b: Di --~ L is said to be a monomorphism if (i) & is a 
morphism and (ii) ~b(a) I ~b(b) implies a 3- b for all a, b e Di. 

• A mapping ~b: DI ~ L is said to be an isomorphism if qb is a 
surjective monomorphism. 

• A mapping 0: DI x D2 --> L is said to be a semibimorphism if  
- - a ,  b E Dl with a I b implies 0(a, c) 3_ 0(b, c) and 0(a E) b, c) 

= 0(a, c) • 0(b, c) for all c E D2. 
- - c ,  d ~ D2 with c _L d implies 0(a, c) 3_ 0(a, d) and 0(a, c • d)  

= 0(a, c) ~ 0(a, d) for all a ~ D I. 
• A mapping 0: Dt x D2 --~ L is said to be a bimorphism if it is a 

semibimorphism and 0(1, 1) = I. 
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• A mapping 0: D~ × D 2 X . ."  X D, ---) L is said to be a multimorphism 
if it is a semibimorphism in every pair of its arguments and if 0(1, 
. . . .  1 ) = 1 .  

Definition 19. Let DI . . . . .  D~ denote a family of  n D-posets. We say 
that a pair ( ~ ,  O) consisting of  a D-poset ~ and a multimorphism O: DI 
x --- x D~ --~ ~ is a tensor product of  the family D~ . . . . .  Dn if the 
following conditions are satisfied: 

• If L is a D-poset and 0t: D~ × "'" X Dn ---) L a multimorphism, then 
there exists a morphism 13: ~ --) L such that 0L = 13 ° O. 

• Every element of  ~ is a finite orthogonal sum of  elements of  the 
form O(al . . . . .  a~) with ai ~ Di for all i. 

We also write ~ = ®7= i Di = Dl ® "'" ® Dn and O = ®. 

Dvurerenskij (1995) has proven that two D-posets DI and D2 admit a 
tensor product if and only if there is a difference poset L for which there is 
a bimorphism 0L: D~ X D2 --~ L. The definition of the tensor product of D- 
posets and Dvurerenskij 's theorem can straightforwardly be extended to any 
finite number of D-posets (Pulmannowi, 1995), 

Let in the sequel N denote the set of positive integers including 0. We 
adopt the following definitions: 

Definition. A set f~ with an operation T:  ~ X f~ ~ 1~ is called a 
semigroup if the associative law is satisfied. 

Definition. A triple ( f l ,  T ,  (9) is called a semiring if: 

° (D~ T )  is an Abelian semigroup with neutral element. 
• (f~, (9) is a semigroup with unit 1. 
• The distributive laws are satisfied. 

Example. Let ct e R+\{0} and define N,, := {n ¢' In e N}. A semigroup 
operation +,,: N~ X N,, ~ N,, is defined by u +~ v := (u ~/" + v~/")'L Further, 
define (9~,: N,, X N,, --4 N,, by u (9,, v := (u ~/". v~/") ~ = u- v. Then the triple 
(N,,, +,,, (9,0 is a semiring. For all ct ~ R+\{ 0 } there is a semiring isomorphism 
t,,: N,, "-, N, L,,(u) := u I/'. We call (N,,, +,,, (S),,) the semiring of  a-scaled 
natural numbers. 

Definition. Let (M, +)  be an Abelian semigroup and (f~, +,  (9) be a 
semiring and -: ~ × M ---) M be a 'scalar multiplication.' Then the system 
(M, +;  r ,  (9; • ) is called a semimodule over the semiring (~ ,  +, (9) if for 
all to, tot, i.o 2 E ~'~ and m, ml, m2 ~ M: 

• t O ' ( m  I q- m 2 )  = t o - m  I "t- t o - m  2. 
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• (col + eo2)'rn = co,.m + toz'm. 
• (col ® o~2)" m = to1" (co2" m ) .  

• l . m = m .  

Consider now two complex Hilbert spaces HI and H 2 and the correspond- 
ing sets of effects @(H0 and ~(H2). An immediate consequence of Dvure~en- 
skij's theorem is that the tensor product of @(H0 and @(H2) exists. To gain 
insight into the structure of the space of effect histories it is necessary to 
construct explicitly the tensor product of ~ ( H 0  and ~(H2). To this end we 
regard H~ as right sernirnodule over N and H2 as left semirnodule over N 
and denote by H~ (~N H2 the tensor product of the N-sernimodules H~ and 
H2 in the category of sernirnodules over N, that is, Hj ®N H~ is the free 
Abelian sernigroup generated by elements of the form ~ ®N go with ~ E Hi 
and go e H2 subject to the following relations: 

1. (q', + ~2) ®N go = (qJ~ @N go) + (~2 ®N go) 
for all ~1, ~2 e Hi and go ~ Hz. 

2. ~ ®N (go1 + go2) = (~ ®N sol) + (~ ®N go2) 
for all ~ m Hi and go1, go: ~ H2. 

3. n(~ ~N go) ~ (~n) ®N go = t~ ®N (ngo) 
for all t~ ~ HI, go E Hz, and n e N. 

To every E~ E ~ ( H 0  and E2 e ~(H2) one can define a map Hi ®N 
H2 --') HI ~)N H2 by 

E, ®N E2(+ ®N go) := E ~  ®N //2',O 

~(HI) and ~(H2) can also be regarded as right and left N-sernimodules, 
respectively. We can thus consider the tensor product @(H0 ®N @(H2) of 
@(H0 and @(H2) in the category of N-sernimodules. ~ ( H 0  ®N @(H2) is 
the free Abelian sernigroup generated by elements of the form EI ®N //:2, 
where El e @(Hi) and Ez ~ @(Hz) subject to the following relations: 

1. n(Et ®N Ez) = (Eln) ®N E2 = E~ ®N (nE2) 
for all E~ ~ ~(H~), Ez e ~(Hz), and n ~ N. 

2. (E~ ®N E~) + (E~ ®rq/~2) = E~ ®rq (E: + ~'2) 
for all E~ ~ ~(H~) and E2, Ez e ~(H2). 

3. (E~ @rq E2) + (/~1 ®N E2) = (E~ + /~) ®N E2 
for all E~, E~ m ~(FIt) and E2 ~ ~(H2). 

The scalar products on HI and H: allow one to define a scalar product 
on H~ ®N H2 given by 

(~  I A I xtr) := (~b I E, I ~}(to I E21 go} 

if ~ = d ~ ® N c o ,  ~ = t ~ ® N g o ~ H ~ ® N H ~  

and A = E~ ®N E2 ~ ~(HI)  ®N ~(H~_) 
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This 'scalar product' is extended by linearity to arbitrary A ~ @(Hi) ®N 
@(H2) and (I), ~ ~ HI ®N Hz. A partial order on ~(Ht)  ®N ~(H2) can 
now be defined. For A, B E ~(Ht)  ®N ~(H2) we set A --< B if (~IA IXt r) 
--< (~lnlXI t) for all • E Hi ®N H2. A finite family {El ®N Fi}i of elements 
of @(H0 ®N ~(H2) is a decomposition of 1 @N 1 if Ei Ei ®N Fi = 1 ®N 
1 in ~(Hl) @N ~(H2). 

In order to establish the effect algebra structure on ~(H~) @N @(H2) 
we define a partial binary operation GN on ~(HI) ®N @(H2) by 

A O N B : = A  + B if A + B<-- I 

for all A, B E ~(HI)  ®N ~(H2). However, (~(Hl)  ®N (~(H2), ON) is not 
yet the tensor product of ~(Hl)  and @(H2). Indeed, (@(H0 ®N ~(H2), ON) 
is not even a D-poset. We next define another partial binary operation O~ 
on ~(Hl)  ®N ~(H2). We say that a O~-sum of the form 

(El ®N F 0  O~  (E2 ®N F2) O ~  "'" O~  (E,~ ®N F.) 

of finitely many elements Ei ®N Fi E @(H0 ®N @(H2) exists if there exists 
a decomposition ON,," ei ®Nf  of 1 ®N 1 in ~(Hi)  ®N @(Hz) such that every 
term of the form Ei ®N fi  occurs also in the decomposition ON,iEt ei ® N f  
of 1 ®N 1, i.e., if for every i ~ { 1 . . . . .  n} there exists a j ~ I such that Ei 
®N f i  = ej ®N fj. 

In this case we also adopt the following way of speaking: we say that 
the O~-sum 

(El ®N FI) O~ (E2 ®N F2) O~ "'" O~ (E. ®N Fn) 

is a O~-part of I ®N 1. In this case we set 

(E~ ®N F0  O~ (E2 ®N F2) O~  "'" O~  (Eo ®N F.) 

"-- (El ®N F0  ON (E2 ®N/72) ON "'" ON (E~ ®N F~) (13) 

We further say that a O~-sum 

(E~ ®N F0  O~  (E2 ®N f2) O~  --- O.~ (E~ ON F.) 

is a minimal representation of its associated O~-part of I ®N 1 if the number 
of terms in the sum cannot be reduced by applying the defining relations 1, 
2, and 3 of @(H0 ®N ~(H:)  (see above). 

The O~-sum G,~ O~  Gt~ of two arbitrary elements G~ and Gt3 ~ ~ ( H 0  
®N ~(H:)  is defined if G,~ possesses a well-defined decomposition 

G,, = (E~, ®N f,,l) O~ ' "  O.-~ (E,,. ®N f ~ )  

and if G~ possesses a well-defined decomposition 
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GO = (E~t ®N F~l) 0 ~  "'" 0 ~  (E~m ~N El3 m) 

(i.e., G~ and GI~ are both well-defined ~ - p a r t s  of 1 ®N 1) such that 

(G~ O_~ GI3) := (E,~, ®N F.~.) O~ "'" O~ (E,~,, ®N F.~.,) 

@~ (El3, ®N F~,) O~ "'" @~ (EI~,, ®N Fl3m) 

is well defined. It is clear that (G~ G~ G~) so defined is independent of the 
particular decompositions considered. We say that two O~-parts of 1 ®N 1, 
say, G~ and G~, are equivalent if for all @~-parts G of 1 ®N 1 the following 
holds: G O~ G~ is well defined and equal to 1 ®N 1 if and only if G ff)~ 
G~ is well defined and equal to 1 ®N 1. We also write Ga - ~  G~. We write 
for the -~-equivalence class of G either [G] or (abusing the notation) simply 
G. It is clear that the equivalence class of a homogeneous element E ®N F 
contains only the element E ®N F, i.e., [E ®N F] = {E ®N F}. The partial 
addition O~ defined above for @~-parts of I ®N 1 induces a partial addition 
on the equivalence classes of G~-parts of 1 ®N 1 (denoted by the same 
symbol) by 

[G~] O~ [Gx] := [Ga @7 G j  

for all G~ and G~ for which the right-hand side is welt defined. It is clear 
that every equivalence class [G] contains at most two elements. Further, if 
[G] contains more than one element, then the complementary class [G]' := 
[G'] of [G] (defined by [G] O~ [G]' = [1]) contains only one element but 
not vice versa. For well-defined O~-parts G E @(HI) ®N (~(H2) of 1 ®N 
1 with a minimal representation of the form 

G = (El ®N El) O~ (E2 ®N /72) O~ "'" O~ (E, ®N F,) 

there are two candidates, both of which may serve as complements in case 
they are well defined, namely 

G* := (El ®N (1 - El)) @~ (E2 @N (1 -- FJ)  O~ "'" O~ (E. (~N (1 -- Fn) ) 

~ ((1 - (E~ (9 Ez (9 "'" @ E.)) ®N 1) 

G** := ((1 - El) (~N F0 @~ ((1 - Ez) ®N FZ) @~ "'" @~ ((1 - E.) (~N F.) 

@~ (1 ®N (1 -- (Fl ~ F~ (9 "'" (9 F,,))) 

However, if G is well defined, it is clear that either G* or G** is well defined. 
(If they are both well defined, then they are equivalent of course, since also 
G ~ G* and G ~ G** are both well defined and equal to 1 ®N 1.) Define 
~ ( H p  ~ ~(H2) as the effect algebra with partial binary operation ~ as 
the set consisting of all ~ -equiva lence  classes of well-defined finite ~ -  
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sums G of elements of the form El ~ 3  E2 := E1 ®N E2 e @(Hp ®N @(Hz), 
i.e., consisting of all --3-equivalence classes of ~)~-parts of 1 ®N 1, subject 
to the following relations: 

1. n(Ei ~ E2) = (nEt) ~ E2 = El ~ (nE2) 
for all El e @(Hi), E2 e @(H2), and n e N, whenever the expres- 
sions are well defined. 

2. (El ~ 3  E2) O3 (E, ~ / ~ 2 )  = E~ ~ 3  (E2 • E2) 
for all El e ~(Ht)  and E2, £'2 E @(H2), whenever the expressions 
are well defined. 

3. (El ~ 3  Ez) G~ (/~l ~ z  E2) = (El • / ~ t )  ~ 3  E2 
for all El,/~l E ~ (Hp ,  and E2 e @(H2), whenever the expressions 
are well defined. 

Theorem 2. The pair (~(HI) ~ 3  ~(H2), ~ 3 )  is the tensor product of 
~(Hl)  and ~(H2). 

Proof. That every element G of @(H0 ~ 3  ~(Hz) is a finite 0 ~ -  
orthogonal sum of elements of the form El ®N Ez with El e ~(Hi)  and Ez 

~(HI) and that to every G e f~(Hi) ~ 3  ~(H2) there is a unique G* 
~ ( H l ) ® ~  ~(H2) suchthat G ~ G *  = 1 ®N 1 a ~(Hl)  ®3 ~(H2) is 
clear by construction. Let ( (~ ,  e 3 ) ;  o )  denote the tensor product of ~(HI) 
and ~(H2). Then there exists a morphism 0: ~ --> @(Hp ®3 ~(H2) such 
that ~ 3  = 0 o O. Every element in ~(Hi)  ®3 ~(Hz)is  an equivalence class 
of G-~-parts of decompositions of 1 ®N 1 e ~(HI) ®3 ~(Hz). The map O 
o ~ i - :  ~ (~(Hi) X @(H2)) ---> ~ maps the collection of all homogeneous 
terms (i.e., those of the form ei ®Nfj) in every particular decomposition of 
1 ®N 1 to a complete, ~)~-orthogonal subset of ~ .  Thus 0 o ®~l can be 
extended to a map which maps every equivalence class of ~3-parts of I ®N 
1 to a ~3-part  of 13 = O o ®~(1 ®~ 1). We denote this extension also by 
O o ® ~ .  Since then 

0 o 0 o ~ 1  = id~(Hff'~e(H2) 

it follows that 0 is surjective. We show that 0 is also injective. To this end 
consider bt, b2 e ~ such that 0(b0 = 0(b2). Both 0~bt) and 0(b2) are 
equivalence classes of ~ - p a r t s  of ~3(1 ,  1). Thus O o ®~l(0(bl) ) = O o 
®~l(0(b2)). Since ~ is a D-poset, bl and b2 are ~),~-sums of elements of 
the form bi = O(e~l,e~2) and b~ = O(e~l, e~),  i.e., bl = ~ b~ = ~)~ 
O(e~ l, eie) and b~ = ~93 b~ = ~ O(e~l,e~).  With 0 o O = ®~ it follows 
that O o ® ~  (0(hi)) = b~ and thus 0 o ® ~  (0(b0) = bl and similarly O 
o ~ l  (0(b:)) = b:. Thus bl = b2. It follows from the above argument that 
0-~ is also a morphism. Thus 0 is an isomorphism between D-posets and 
therefore (~ ,  ~ 3 )  = (~ (Hp  ~3~ ~(Hz), ~)3). • 
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This result can immediately be generalized to the tensor product of 
finitely many such effect algebras. With an obvious generalization of our 
above notation we have the following: 

Corollary 2. The pair (~(Hl)  @~ ~(H2) @_~ "'" @3 ~(H.) ,  G3)  is 
the tensor product of the family ~(Hl)  . . . . .  ~(H.).  

In the sequel we denote by 0 the map defined in the proof of Theorem 
2 given by 

0 :  ~(HL)  × "'" X (}(H,,)  -+  ~°(Hi)  @9 " "  @~ ~(H, , )  

0 ( u , ,  . . . . .  u,n) : =  u, ,  ®~ . - .  @3 u,,, 

Remember that the equivalence class 0 (u ,  . . . . .  u,.) contains only the element 
u, ~ 3  "'" @~ u,n- However, general equivalence classes [GI • ~(Hi)  ~ 
• " ®~ @(H.) contain at most n! elements. 

Now we consider homogeneous effect histories with fixed finite support 
S = {tt . . . . .  t.}. The set of all such histories can be identified with the 
Cartesian product ~(H),t X ..- × ~(H) , .  The class operator defined by 
equation (10) factorizes according to 

0 
u : (ut ,  . . . . .  Urn) ~ O(u)  = ut, ®~ " ' "  ®~ Urn 

x/ 
- }  Ox/-O~ ~-- u}( 2 @~ ' '"  @ 3  utl2tn 

c;0 
C;o( O,/g~) : C,o(U) 

where C;o is defined in an obvious way. 
We define a decoherence functional dp,s for pairs (a, b) of homogeneous 

elements in 

(@(HI),, @N " ' "  @N @(H),.) X (@(H),, @N " ' "  @N @(H),~) 

by 

~Ip,s(a. b) : :  tr(C;o(.g~)PC/o(,/-b)*) (14) 

The decoherence functional so defined cannot be extended to a O~-additive 
functional on 

(f~(H),, @~ "'" @~ ~(H),,,) X (@(H). @~ "'" @~ ~(H),,,) 

that is, the D-poset structure given^by ~9~ is not the physically interesting one, 
The decoherence functional dp,s can easily be extended to arbitrary finite 

homogeneous effect histories 
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dp?~: E.n(H) × En.(H) -~ C, dp,j~(u, v) := ap.~t.~u~,,)(O(u), O(v)) 

for all u, v • Enn(H). 
However, before we proceed to define and investigate the algebraic 

structure in terms of which the general consistency condition in our general- 
ized history theory can be formulated, we briefly mention that there exist 
special sets of effect histories on which the decoherence functional induces 
a probability measure even though in general none of the familiar consistency 
conditions is satisfied for the elements of the special sets. 

To this end fix an arbitrary finite homogeneous effect history u0, fix a 
t* > tf(Uo), and for every E • ~ (H)  denote by ue the finite homogeneous 
effect history defined by ~(ue) := ~(u0) U {t*} and by 

~'(u0),, t ~ t* 
(ue), := LE ' t = t* 

that is, Ue !s the extension of Uo by the effect E. The above decoherence 
functional dp,~t.0)ul,. I induces a probability measure on the set ~ := {uet E 
• @(H)} ----- ~(H)  by 

pp: ~ ~ R, pp(ue) := dp.~(,,o)ul,.j(O(ue), O(ue)) (15) 

The D-poset structure on @(H) induces a D-poset structure on f~. It is easy 
to see that pp is additive on ~ in the sense pp(ueloe2) = po(UEt) + Pp(UEz) 
whenever E~ • E2 is well defined. We will say that the D-poset of histories 

which can be constructed in this way [and which in particular is isomorphic 
to @(H)] is a full D-poset of  effect histories. If E and F are orthogonal 
projection operators, then 

~p.~.o~l,.l(O(ue), O(u~-)) = 0 

However, if E and F are not orthogonal projection operators, then in general 

Re dp,~(.0~u/,.l(O(ue), O(UF)) :/: 0 

The probability pp(ue) can be interpreted as the conditional probability that 
the event E will be realized at time t* given that the history u0 is realized. 
Stated differently, the probability of the history UE in the state p equals the 
probability of the effect E in the (reduced) state Cto(Uo)pCto(Uo) t, i.e., 

pp(ue) = pc,,~,o)pC,d,,oj*(E) 

We mention already here that it is possible to construct further exceptional 
D-posets of effect histories such that the decoherence functional is additive 
in both arguments. We will return to this point below. 
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We now return to our determination and investigation of the natural 
algebraic structure which makes the decoherence functional additive in both 
arguments. It is possible to define a tensor product ~(H),t ~ -. .  0 ~  
@(H)tn such that the corresponding decoherence functional dp.s is additive in 
both arguments, as we will show next. To this end we again consider @(Hi) 
@N ~(H2) and define a partial binary operation ~i,~ by 

A ~)N B := (A t/2 + BI/2) 2 if A 1/2 + B I/2 < 1 (16) 

for all homogeneous elements A = Al ®N A2, B = BI ®N B2 ~ ~(Hl)  ®N 
@(H2). Finite GN-sums of homogeneous elements are defined recursively 
and the set of all well-defined finite ~)N-sums of homogeneous elements will 
be denoted by ~(Hl)  ~N ~(H2). Notice that A ~N B is a well-defined 
bounded, linear operator on Hi ®N H2, but in general A GN B ~@(HI) 
®N ~ ( H g .  

We have defined above a partial operation O on the space ~(H)  of 
effect operators on the Hilbert space H such that (~(H), 0 )  is a D-poset. 
However, the D-poset structure on (~(H) is not unique. Define A ~) B := 
(A u2 + BU2) 2 for all A, B e ~(H)  satisfying A u2 + B u2 <- 1. To prove that 
(~(H),  ~)) is a D-poset is straightforward. Moreover, (~(H), ~)) is an N2- 
semimodule. In this work we denote the D-poset (~(H), O) briefly by ~(H). 
When we refer to ~(H)  supplied with the D-poset structure given by ~), 
then we explicitly write (~(H), ~) .  

We can now proceed as above and define a partial binary operation ~ 
and construct the tensor product of (~(Hi),  ~ )  and (~(H2), ~)) in the category 
of N2-semimodules. Everywhere in our above description of the definition 
of O~  preceding Theorem 2 we simply have to replace: 

• O b y ~  
" ON by ~N 

• --~ by ~ 

Note 8 We say that a ~-sum of the form 

(E, ®N Fl) ~ (E2 @N F2) ~)~ "'" ~)~ (E~ ®N Fn) 

of finitely many elements E~ ®N F i e  @(H0 ®N ~(H2) exists if there exists 
a decomposition ~)N,i ei ®Nfi of 1 ®N 1 in @(Hi) ~N @(H2) such that every 
term of the form Ei ®N F~ occurs also in the decomposition ~)N.i~l e~ ®Nfi 
of l ®N 1, i.e., if for every i e {1 . . . . .  n} there exists a j  e / such  that 
Ei ®N Fi = ej ®Nfj. In this case we also adopt the following way of speaking: 
we say that the O~-sum 

(E, ®N F,) O e  (E2 (~)N F2) q~)e "'" (~)e (E,, @N /7,,) 
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is a ~ - p a r t  of 1 ®N 1. In this case we set 

(Ez ®N F,) ~)~ (E2 QN F2) ~ "'" ~ (En ®N F,,) 

"= (El ®N El) @N (Ez ®N F2) @N "'" @N (E. (~N F.) (17) 

We further say that a ~ - s u m  

(El ®N F,) f ~  (E2 ®N F2) ~ "'" @~ (E. ®N F.) 

is a minimal representation of its associated @~-part of 1 ®N 1 if the number 
of terms in the sum cannot be reduced by applying the following relations: 

1. n(El ®N E2) = (nEO ®N E2 = El ®N (nEz) 
for all El ~ (~(Ha), @), Ez ~ (@(H2), O), and n E Nz whenever 
the expressions are well defined. 

2. (Et ®N E2) @~ (E~ ®N /~2) = El ®N (E2 @/~2) 
for all El ~ (@(Hi), @) and Ez, Ez E (@(H2), G) whenever the 
expressions are well defined. 

3. (El ®N Ez) ~ (Er ®N Ez) = (El ~ El) ®N E2 
for all El, /~1 ~ (~(Hl),  ~ )  and Ez E (@(H2), @) whenever the 
expressions are well defined. 

The ff)~-sum (G~, ~ GI~) of two arbitrary elements G~ and GI~ E @(H0 
~N ~(H2) is defined if G,~ possesses a well-defined decomposition 

G,~ = (E,,, ®N F,~,) ( ~  "'" ( ~  (E¢,. ®N F..) 

and if G~ possesses a well-defined decomposition 

G~ = (E~, ®N F~,) ~ ..- ¢b~ (E~,. ®N F~m) 

(i.e., Go, and G~ are both well-defined (~-parts  of 1 ®N 1) such that 

(G= ¢b~ G~) := (E,,, ®N F,,,) ¢b~ "'" ¢b~ (E,,. ®N F,O 

~)~ (EI3, ®N FI3~) ~ "'" ( ~  (EI3,. ®N FI3,.) (18) 

is well defined. It is clear that (G,~ ( ~  G~) so defined is independent of the 
particular decompositions considered. We say that two (~-parts  of 1 ®~ 1, 
say, Ga and G~, are equivalent if for all (~-parts  G of I ®N 1 the following 
holds: G ( ~  Ga is well defined and equal to 1 ®N 1 if and only if G ( ~  
G-~ is well defined and equal to 1 ®N 1. We also write Gs ~--v G. r We write 
for the ~-equiva lence  class of G either [G] or (abusing the notation) simply 
G. It is clear that the equivalence class of a homogeneous element E ®N F 
contains only the element E ®N F, i.e., [E ®N F] = {E ®N F}. The partial 
addition ( ~  defined above for (~-parts  of I ®N 1 induces a partial addition 
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on the equivalence classes of ~ - p a r t s  of 1 ®N 1 (denoted by the same 
symbol) by 

[G~] ~ [G~] := [G~ ~ Gv] 

for all G~ and G~ for which the right-hand side is well defined. It is clear 
that every equivalence class [G] contains at most two elements. Further, if 
[G] contains more than one element, then the complementary class [G]' := 
[G'] of [G] (defined by [G] ~ [G]' = [1]) contains only one element but 
not vice versa. For well-defined ~ - p a r t s  G E ~(Hi)  ®N ~(H2) of 1 ®N 
1 with a minimal representation of the form 

G := (Et ®N Ft) ~ (E2 @N F2) ~ "'" ~ (E. ®N Fn) 

there are two candidates both of which may serve as complements in case 
they are well defined, namely 

G* := (El @N (1 - -  FV2) 2) (~),~ (Ez @ N  (1 - F~/2) 2) 

( ~  " "  ~ (E~ ®N (1 - F~/2) 2) 

( ~  ((1 - (El/2 ~) Ey E ~) "'" ~) E~/2) 2) QN 1) 

G** := ((1 - EV2) 2 ~N FI) ( ~  ((1 - El/2) 2 ~)N F2) 

~ "'" ~ ((1 - gnl"2) 2 QN Fn) 

@~ (1 ~)N (1 -- (F]/z ~) F~ tz ~) "'" @ F~/2)2)) 

However, if G is well defined, it is clear that either G* or G** is also well 
defined. (If they are both well defined, then they are equivalent of course, 
since then also G @~ G* and G @~ G** are both well defined and equal 
to 1 ®N 1.) Define @(Hi) ~ ~(H2) as the effect algebra with partial binary 
operation @~ as the set consisting of all ~--~-equivalence classes of well- 
defined finite @~-sums G of elements of the form El @~ E2 := El ®N//2 
e ~(H1) ®N @(H2), i.e., consisting of all ~-~-equivalence classes of O~- 
parts of 1 ®N I, subject to the following relations: 

1. n(El ~ E2) -- (nEl) ~ E2 = El ~ (nEz) 
for all El E (@(H,), @), E2 E (@(H2), ~) ,  and n e N2 whenever 
the expressions are well defined. 

2. (El ~ E2) ~)~ (El ~ /~2) ---- El ~)~ (E2 @ /~2 )  
for all E~ e (~(HI), ~ )  and Ez, Ez e (~(Hz), G) whenever the 
expressions are well defined. 

3. (El ~ E2) ~z (/~, ~ E2) = (E, ~ ~',) ~ E~ 
for all E~,/~l ~ (~(H~), ~) and E~ ~ (~(H~), ~) whenever the 
expressions are well defined. 
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Lemma 7. The pair (@(Hi) ~)~ @(H2), ( ~ )  is the tensor product of the 
D-posets (@(H0, ~ )  and (~(H2), (9) in the category of Nz-semimodules. 

Lemma 7 can easily be extended to any finite family (~(Hl) . . . . .  @(Hn). 
The decoherence functional [Io. s defined above in equation (14) for pairs (a, 
b) of homogeneous elements in 

(@(H),t ®N "'" QN (9(H),,,) × (@(H),, ~gN "'" ®N @(H),.) 

can now be extended to an additive decoherence functional dp,s on 

(@(H),t ~ ".' ~} @(H),.) X (@(H),t ~ "-~ @(H),.) 

Theorem 3. The decoherence functional 

dp.s: (~(H)t, ~)~ "'" ~)~ ~(H),,,) 

X (~(H),, ~9 "'" ~9 ~(H),,,) ---> C 

do,s(a, b) := tr(C;o(x/~)PC;o(,,/-~)t) 

satisfies for all a, b • @(H),3 ~ -..  ~ @(H), : 

• do.s(a, a) • R and dp.s(a, a) >- O. 
• dp.s(a, b) : d,.s(b, a)*. 
• do, s ( l ,  I ) =  1. 

• dp.s(O, a) = 0 for all a. 
• dp.s(a, (9~ a2, b) = dp,s(a,, b) + dp,s_(a2, b) 

for all al, a2, b • ~(H),~ ®9 "'" @9 ~(H),., for which the left- 
hand side is well defined. 

Definition 20. Let (K, --<) be a partially ordered set. A K-directed system 
of D-posets is a family D~ := {D,. t • K} of D-posets supplied with a 
family of morphisms L :  D, ---> D~. t, s • ~, defined iff t -< s, such that: 

• f ,  = ido, for all t • K 
• I f t < - - s < - -  r i n ~ , t h e n m f t ~  = f r .  

Let D~ be a K-directed system of D-posets. Then a D-poset 52 supplied 
with a family of morphisms {f,: D, ~ 52 },~z is called the direct limit of D:~ if: 

• I f  t -< s in ~, thenf~f., = f .  
• I f  D is  a D-poset supplied with a set of morphisms { gt: Dt ~ D, t 

e ~}, then there exists a unique morphism g: 52 ---> D such that gft 
= g t f o r a l l t  • K. 

The direct limit of a directed system of D-posets always exists (Pulman- 
novfi, 1995). 
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Let in the sequel ~ denote the set of all finite subsets of R partially 
ordered by set inclusion. For every t ~ R set @(H), := ~(H)  and for every 
T = {tl . . . . .  t,,} E ~ set @(H)r := ~(H),  t ~ "'" ~ @(H)t,,. Then it has 
been shown by Pulmannov~i (1995) that for every T C S ~ ~ there exists 
a morphismfTs: ~(H) r  ---> @(H)s such that {@(H)r, T ~ ~} supplied with 
{frs, T C S ~ ~} is a K-directed system. Let, e.g., T = {tl, t3} C S = {tl, 
t2, t3}; then frs(A ~ _  B) = A ~ _  1 ~ B. 

Therefore the direct limit of {(~(H)v @~), T ~ ~} exists and will be 
denoted by (@(H)~, @~). Now, ~(H)~ can be constructed as follows: consider 
the disjoint union t 3 r ~  @(H)r and call two elements hi, h2 of t .3r~ ~(H)T 
equivalent if there exist Tt, Tz, TI2 E ~ such that hi ~ T I C  Tlz, hz ~ 7'2 
C Tl2, and such thatfr~rt2(ht) = fr2r~2(h2). Then @(H)~ is the quotient space 
of tAr~z ~ (H) r  by the so-defined equivalence relation. It is easy to extend 
the D-poset structures on ~ (H) r  for T ~ ~ to a D-poset structure on @(H)~. 
Thus the above-defined decoherence functional can be generalized to a deco- 
herence functional on ~(H)~ × @(H)~ by 

dp.~: ~(H)~v × @(H)~ ----> C 

d~ v(A, B ) :=  dO.~(A)U~B)(fe,(A).~(A)t3.~(B)A, fs(B).~(A)t3.~(B)B) 

where d(A) denotes the temporal support of A and ~3(B) denotes the temporal 
support of B, andf:.~a).~a)u.~B) andf_~s) .~(a)u~(~) denote the canonical morphisms 
in the directed system {@(H)~ T ~ ~} from @(H)~A)and from @(H)~(m to 
@ (H)~a)u..,(8), respectively. 

Lemma 8. The so-defined decoherence functional d~...v satisfies all proper- 
ties listed in Theorem 3; in particular 

dp.~(a~ ~ a2, b) = d~.y(a~, b) + d,.y(a2, b) 

for all a~, a2, b ~ ~(H)~ for which the left-hand side is well defined. 

Now we are ready to formulate the consistency conditions in our general- 
ized history formalism. 

Definition 21. Let ¢g be a set of elements of (~(H)~, O~). Then an 
arbitrary subset Acg of ff)~ ~3 is said to be preconsistent with respect to the 
state p if 

Re d~.~(a, b) = 0 

for all a, b ~ A~ for which a ~ b is well defined in @~ q3 

Further, O~  ~ is said to be consistent with respect to the state p if 

Re d, v(a, b) = 0 

for all a, b ~ @~ ~ for which a ~ b is well defined 
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An arbitrary subset ~o of ~(H)z  is said to be consistent with respect to p if 
there exists a subset ~ of ~(H)~. such that ~0 = ~)~ ~ is consistent with 
respect to p. 

Remark 13. Above we have found two sorts of D-posets on which 
the decoherence functional can be unambiguously defined such that the 
decoherence functional is additive in both arguments. The decoherence func- 
tional induces a probability measure on consistent sub-D-posets of (f~(H)~, 
~)~) and on full D-posets of effect histories. Since effect histories represent 
the general physical properties of a quantum system, for aphysical description 
of a quantum system one needs a probability measure which is defined 
directly on some set of effect histories. This task has only been achieved in 
the latter case for the full D-posets of effect histories. The elements of @(H)z 
are not effect histories. Hence in the former case we have to single out those 
sets of effect histories for which the description in terms of elements of 
consistent sub-D-posets of (~(H)~, ~)~) can be lifted to an unambiguous 
description in terms of effect histories. Furthermore, it is possible to define 
a 'reasoning' on a D-poset D on which an additive decoherence functional 
d is given. Let a, b, c s (D, ~ )  be pairwise orthogonal elements; then we 
say that 

a ~ ] ) c ~ d a O b  if d ( a ~ c ,  a O c ) = d ( a , a ) ~ O  

and d (aG b, a~) b) = d (aG b ~ c, a~) b O c) ~ 0 

If d induces a probability measure on D, then the second condition is redun- 
dant. Hence we also have to single out those sets of effect histories for which 
the reasoning in terms of elements of consistent sub-D-posets of (~(H)~, 
~ )  can be lifted to an unambiguous reasoning in terms of effect histories. 

Remark 14. If~)~ ~ is consistent w.r.t, p, then dp.z(a, a) can be interpreted 
as probability of a in ~)~ ~. 

Remark 15. There is a canonical map ~ :  Efi,(H) ~ ~(H)~ defined by 
~(u) := ~,t~.~(,) ut. The decoherence functional dp, z induces a map 

do.,j~: E~.(H) × Efia(H) ~ C 

dp,~(pl, P2) := dp,z(~(Pl), 9~(p2)) 

Definition 22. We say that a map ~: ~ C ~(H) ~ @(H)z extends ~3~ 
if ~(p) = ~(p)  for all p e ~ N Efin(I-I). 

Definition 23. A Boolean lattice (~,  ve~, ̂ ~.,z, -~)  is said to be an allowed 
Boolean lattice of  ( inhomogeneous) effect histories if the following conditions 
are satisfied: 
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• ~ is a Boolean sublattice of  I~n,(H); the lattice operations v~a and 
A~ are the restrictions of v~e and A~e tO 9~, respectively. The lattice 
operations v~ and ^~ are such that a complementation -~a can be 
unambiguously defined on ~ .  

• ~ is atomic and the set of atoms consists of homogeneous elements. 
• The canonical map ~ :  ~ fq Eta,(H) ----> f~(H)v defined in Remark 

15 can be uniquely extended to a positive valuation B on ~ with 
values in ~(H)~v, i.e., to a map B: ~ ---> ~(H)~v satisfying 
B(bl v~ b2) 0 ~  Iq(bl) = B(b/) ( ~  B(bl ^~ b2) for all bl b2 e ~ .  
This condition means in particular that the left-hand side and the 
right-hand side are well-defined for all hi, b2 E ~ .  

An allowed Boolean sublattice of I~n,(H) will be briefly denoted by (~ ,  13). 

Remark 16. The greatest element 1~ and the least element 0~ in ~ do 
not necessarily coincide with the greatest element 1 and the least element 0 
in I~n,(H), respectively. If the set of atoms of ~ contains more than two 
pairwise different elements, then 0~ = 0. Every inhomogeneous history in 

is the join of disjoint homogeneous atoms of ~ .  

Remark 17. The decoherence functional dp,~ induces a decoherence 
functional on ~ × ~ by dp.~: ~ × ~ ~ C, dp.~(pl, /)2) :=  d0.~(B(P0, 
B(p2)), which is additive in both arguments with respect to the Boolean 
lattice structure on ~ .  

Lemma 9. The value B(u) does not depend on the choice of the allowed 
Boolean lattice of effect histories ~ ~ u. 

Proof If u is a homogeneous history, then the assertion is trivial. If u 
is an inhomogeneous history belonging to two allowed Boolean lattices, say 
(~ ,  13) and ( ~ ' ,  B'), then it is easy to see that there exist homogeneous 
histories hi . . . . .  h, E ~ A ~ '  (not necessarily atoms of ~ and ~ ' )  such 
that u = v7=1 hi. Thus 13(u) = B'(u). • 

Definition 24. Let ul and u2 denote two finite effect histories. Then we 
say that u~ implies u2 in the state p if ul and uz lie in a common allowed 
Boolean lattice (~ ,  [3) of effect histories and if dp,~(u~ ^~ Uz, u~ ^~ u2) = 
dp,~(u~, u~) ~ 0 and if da.~(u~ v~ U2, U I V ~  U2) = dp,~(u2, u2) @ 0. In this 
case we write u~ ~ p  u2. 

Remark 18. It is easy to verify that if p~ ~ p  P2 is valid in one allowed 
Boolean lattice, then p~ ~ p  P2 is also valid in every other allowed Boolean 
lattice of Efi,(H) containing p~ and P2. 

Example. If u~ and u2 are nonzero finite homogeneous effect histories 
such that ut --< u2, where -< denotes the partial order defined in Remark 10, 
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then ut ~ o  u2 for all p for which d~v_(ul, ul) --/: 0 and do, z(u:, u2) 4= 0. To 
see this, consider the trivial allowed Boolean lattice ~ 0  containing only the 
two elements u~ -- 0~ o and u2 ------ 1~ o. 

Remark 19. Let hi and h2 denote two nonzero ordinary homogeneous 
histories. If h~ ~ p  h2 is valid for some p in the sense of  Section 3, then h~ 
~ p  hz is also valid in the sense of  Definition 24 and vice versa. To see this, 
consider the allowed Boolean lattice ~ of  effect histories consisting of  the 
effect histories ht; h2; ht v~  h2; hi A~ h2. [hi v~  h 2 is a possibly inhomogeneous 
effect history. It is important not to confuse the notion of  ordinary inhomoge- 
neous history as defined in Section 2 and the notion of  inhomogeneous effect 
history as defined in this section. In this section the term 'inhomogeneous 
history' is always meant in the sense of  Definition 13 (unless explicitly 
otherwise stated).] The least element in ~ is h~ A~ h2 and the greatest element 
in ~ is hi v~ h2. The atoms in ~ are h~ and hE. The map B extends ~3~ 
and hence maps homogeneous histories to their corresponding projection 
operators on ®i Hi, which in turn can be identified with the corresponding 
homogeneous elements in ~(H)~,  e.g., hi is mapped to B(hl) = Qt~thO hi,,. 
The condition B(bt v~ b2) O_~ B(bt) = B(b2) ff)~ B(bl A~ b2) for all bl, b2 

E ~ fixes B on the inhomogeneous element h~ v~  h2 of  ~ .  On the other 
hand, consider the set c~ C ~ o ( H )  consisting of  {hi, h2, ht v h:, hi ^ h~}, 
where hi v h2 and hi /x h2 are ordinary histories (possibly inhomogeneous 
in the sense of Section 2). The assertion of  this remark is now an easy 
consequence of  Definition 24 and Corollary 1. 

Definition 25. An allowed Boolean lattice (~ ,  B) is called consistent 
with respect to p if 13(~) is preconsistent with respect to p. 

Theorem 4. Let (~ ,  B) be a consistent allowed Boolean lattice of effect 
histories. Then the decoherence functional dp,~ induces a probability func- 
tional on ~ by 

b ,-, dp,v(B(b), B(b)) 
dp.~(B( 1 ~a), B( I ~)) 

Before formulating the generalized logical rule of  interpretation we 
return briefly to the discussion of exceptional sets of  effect histories. We 
have already seen above that the D-poset structure on @(H) is not unique. 
It is possible to define a countably infinite family of  D-poset structures on 
@(H). Let a be a rational number with et > 0 and define 

A O,~ B := (A I/'~ + Bl/'~) '~ 

for all A , B  E ~ ( H )  satisfying A I/~ + B  l/~<- 1 



Consistent Histories and Operational Quantum Theory 1625 

That these expressions are well defined is a consequence of the work of 
Langer (1962). In particular it follows from Proposition 2 in Langer (1962) 
that E ~ is well defined and that E ~ is itself an effect operator for all E 
@(H) and all ~ E Q, a > 0. The pair (~(H) ,  O~) is a D-poset for every 
> 0. Clearly, Ot = • and O2 = @. Moreover, (@(H), G,~) is an N,~- 
semimodule. It is now possible to define the tensor product E~ ®,~.~ . . .  @~.~ 
E,, in the category of N~-semimodules to be the D-poset consisting of all 
~,~.~-equivalence classes of O,~.~-parts of  1 subject to the familiar three 
relations. The equivalence relation ~,~.~ and the partial addition @,~,~ are 
defined completely analogously to ~ and ~ .  

Pick an arbitrary finite homogeneous effect history w0, choose k ~ N, 
k > 0, and choose for all r e { 1 . . . . .  m} a k-tuple of times (t*~, t*2 . . . . .  
t'k) with t*k > " '" > t~.*2 > t*~ such that for all r there is no t ~ ~(w0) such 
that t*t >- t >- t't-~ for some 1 < l -< k. Now we pick m effect operators E~, 
. . . .  E., and define 

E,J-~r(t) := U(t, ti(WF.,,...,E,,))V/-~U(t, tI(WEt....,E,,)) + 

Here t~(WE~,....em) denotes the initial time of the effect history We,.ez.....e,, 
defined by 

~*,~(Wo) := d(we~,...,E,,)"= ~3(w0) L.I {t~,l . . . . .  t~.k . . . . .  t*.t . . . . .  t*,k} 

and 

~'(wo),, t ~ t*l . . . . .  t*k 
(wel.._.E,,)t := lEt(t), t ~ {t*t . . . . .  t'k} 

That is, wet,...,e,, is the extension of Wo by the effects Er(t) at the intermediate 
times t ' j ,  where r ~ {1 . . . . .  m} a n d j  ~ {1 . . . . .  k}. 

Define @k.,, : = { wel....em I Es . . . . .  Em ~ ~(H)  }. The above decoherence 
functional dp.~,,ko~o) restricted to the set O(f~k.,,) : = { O(wet....e,,) I El . . . . .  E,, 

~(H)} is additive in both arguments, e.g., 

^ * W = do..~m,k0vo)(O( el ~kOl,....Em ), O(WFI.-,F,n)) 

= 3p.~..~o)(O(w~,,....e~), O(wF,,....~)) 

+ 3o..~...k~wo~(O(wo,,..,~), O(wF,,.~.)) 

for arbitrary El . . . . .  E,,,, DI, Fl . . . . .  Fm E ~(H)  for which E~ G2/k Dl is 
well defined. O(wE~,...,g,,,) depends upon El . . . . .  Em only through the tensor 
product El ®~./k.~ "'" ®~k.~ E,a and hence there is an embedding bk mapping 
O(~,,,.k) injectively to @(H0 ®~k,~ "'" ~ k , ~  ~(H,,).  Thus O(~,,,,D can be 
identified with the set of all homogeneous elements in @(H~) ®Z/k.~ "'" 
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~Z~k.~ ~](H,,,), i.e., elements of the form E~ ~ /k .~  "'" ~ k . ~  E,,,. In this sense 
~(H~) ®2/k.~ "'" ®2/k,~ @(Hm) can be generated from O(@,,.D by finitely 
many well-defined Gvk,~-operations, that is, we write 

~21k.~ Dk(O(@m.k))/~21k,~ : ~(~'~1) ~21k,~ "'" ~21k.~ ~(Hm) 

The decoherence functional dp.~,,.,(.,o) induces a decoherence functional 
d L'k* [~k(O(@,,,,k)) in a trivial way by p,~m,k(wO) on  

1,~, b) - b~-l(b)) do..,,,,k.~,o)(a, "= 3p,.,~,,.k~w0,(bk t(a), 

The right-hand side is well defined since bk maps O(~',,,,k) bijectively to 
bk(O(@,.,,)). It is now easy to see that for arbitrary m ~ N the decoherence 
functional d~:.',.k~WO) can be extended to a Ovk.~-additive functional on the 
D-poset ~2~,._~ bk(O(~m.k))/~2/k._~- 

Let ~k  be a subset of  the free lattice ..~((~,.,~) generated by (~,..k (for m 
N, m > 0). We will say that ~k  := ~ ( ~ )  is an allowed Boolean lattice 

of  (inhomogeneous) effect histories of  order k if conditions analogous to 
those in Definition 23 are satisfied, namely: 

• ~ ,  is a Boolean sublattice of  ~(f~,..D/~e. 
• ~ is atomic and the set of  atoms consists of  homogeneous elements. 
• The^map bk o O can be uniquely extended to a positive valuation ~k 

on ~k with values in ~2/k,~ [)k(O(@m,k))]~21k,~, i.e., to a map ~k: O~k 
"--> ~21k,~ bk(O(~,n,k))]~21k,~ satisfying 

,~k(dl Vk d2) O~k,~ a~k(dl) 

= ~k(d2) O~dk.~ ~k(dl Ak 62) for d~, d 2 ~ ~ k  

This condition means in particular that the left-hand side and the right- 
hand side are both well defined for all dl, dz E ~k. Here ^k and vk 
denote the lattice operations on ~k. 

The decoherence functional d t'k" and the map ~k induce a decoher- p,~m.k(wO) 
ence functional on ~k  X ~k by 

d~{* " ~k  × ~k ' - ->C p,~'m,k(WO)" 

'?~, dt, k, I~ eU~ ~k(V)) (19) dp:.,,.,k(wo)(U, V) : =  p,~,,,,k(w0)~a3k~, j, 

The decoherence functional d ~k" is additive in both arguments with p,Om.k(W0) 
respect to the Boolean lattice structure on ~k. Furthermore, we say that an 
allowed Boolean lattice ~k  of  effect histories of  order k is a consistent allowed 
Boolean lattice of  effect histories of  order k if the decoherence functional 
d~k. defines a probability measure on the Boolean lattice ~k  by P,~m,k(wO) 
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Po,k: ~k  ---> R, pp,k(v) ¢'p ..... k~wo~ ~, " =  = d~,:~.,.~o~(~(v). ~k(v))  
(2O) 

It is clear that this Pp,k defines a probability measure on ~ if and only if 

Re d ~k* t,, v) = Re At, k. r~  ~, ~ ~k(V)) = 0 P ~m k(;vo) k t~  tat p.~m.k(;vO)t,,,Ok~U) 

for all u, v ~ ~k for which ~ ( u )  Gwk,z ~ ( v )  is well defined. 

Remark 20. It is possible to define the direct limit (~(I--I)e/k.r, Oz~k.~) 
for arbitrary k > 0 and fixed w0 and to extend the decoherence functional 
d ~ "  to a decoherence functional on @(H)2/k,_v. We omit the details. P,~m,k(wO) 

Remark 21. The implication ~ p  has been defined in Definition 24 only 
for pairs of effect histories belonging to an allowed Boolean lattice of effect 
histories [defined with respect to (~(H)v,  ~ ) ] .  

• Analogously, we say for two effect histories w~ and wz belonging to 
some common allowed Boolean lattice ~ of effect histories of order k > 0 
that w~ implies w~ in the state P if 

= dp,~,.,k(w0)(w~, w;) ~ 0 dp.[,.~(.,0)(wt /',~ we, w~ ^k W2) ~k* 

and if 

~ .  A3~. :'" wz) 4= 0 do,~m,t,~wo)(W 1 v k w2, w I v k w2) = Up ...... k(w0),,w2, 

We write w~ ~ w2. 
• For two histories u~ and uz belonging to a full set ~ of effect histories, 

we say that ul implies u2 in the state p if ul ^ u2 is well defined in @ and 
if pp(ul ^ u2)_ = pp(uO 4= O. Here ^ denotes the partially defined meet 
operation on ~ induced by the partially defined meet operation on En.(H). 
We write u j ~ ,  us. 

The universal rule of interpretation of quantum mechanics can now 
be generalized. 

Rule 2. Propositions about quantum mechanical systems should solely 
be expressed in terms of inhomogeneous effect histories which represent the 
general physical properties of a quantum mechanical system. 

• Every description of a quantum mechanical system (i.e., probabilistic 
or predictive statements) should be expressed either (a) solely in terms of 
effect histories belonging to a common consistent allowed Boolean lattice 
(~ ,  B) of effect histories; the probability measure on ~ is induced by the 
decoherence functional dp,~ on ~ ;  or (b) solely in terms of a consistent 
allowed Boolean lattice (~k, ~k) of effect histories of order k > 1; the 
probability measure on ~ is defined by equation (20); or (c) solely in terms 
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of effect histories belonging to a full D-poset ~ of effect histories. The 
probability measure on @ is defined by equation (15). 

• Every reasoning relates solely effect histories (a) belonging to a 
common allowed Boolean lattice (~,  B) of effect histories; or (b) belonging 
to a common allowed Boolean lattice ( ~ ,  ~k) of effect histories of order k 
> 1; or (c) belonging to a full D-poset of effect histories. 

Every reasoning relating histories belonging to a common allowed Bool- 
ean lattice (of order 1) should solely be expressed in terms of the logical 
relations induced by the functional dp.a: ~ × ~ ~ C defined in Remark 17 
and Definition 24. 

Every reasoning relating histories belonging to a common allowed Bool- 
ean lattice of order k > 1 ; should solely be expressed in terms of the logical 
relations induced by the functional d~,, .~0) defined in equation (19) (see 
also Remark 21). 

Every reasoning relating histories belonging to a full D-poset of effect 
histories should solely be expressed in terms of the logical relations induced 
by the probability functional defined in equation (15) (see also Remark 21). 

Remark 22. It is easy to verify that ifp~ ~ p  P2 is valid in one allowed 
Boolean lattice, then p~ ~ p  P2 is also valid in every other allowed Boolean 
lattice of Efin(H) containing p~ and P2. 

4.4. The Algebraic Structure of Generalized History Theories 

We now summarize our discussion by stating the general axioms for a 
generalized quantum theory based on our generalized history concept. This 
subsection parallels the discussion in Isham (1994). However, it contains 
only a rough summary of the main concepts and structures. In every particular 
history theory one has to show that everything is well defined and consistent 
and if necessary to modify the concepts and structures. 

1. The space ~ of history filters or homogeneous histories: 
• ~ is the space of the basic physical properties of a physical system. 

An element in ~ represents the equivalence classes of (operationally undistin- 
guishable) basic entities (propositions) in the interpretation of the theory. 
There exists a canonical map F mapping the elements of ~ to a D-poset ~.  
Now, @ can be interpreted as the set of (equivalence classes of) one-time 
propositions. Moreover, there is a canonical map ~ imbedding OR in a D- 
poset (~23~, O). [In Section 4.3 ~ equals the space of homogeneous effect 
histories °R = Enn(H); cf. Definition 1 1; @ is given by @(H) and F is given 
by F(u) = C,o(u)tC,o(u). ~332 = @(H)v.] 

• ~ is a partially ordered set with unit history 1 and null history 0. 
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• ~ is a partial semigroup with composition law o (Isham, 1994). a o b 
is well defined if ti(a) < t~(b). In this case we say that a precedes b or that 
bfollowsa. Further, 1 o a  = a o  1 = a a n d a o O  = O o a  = O. I f a o b i s  
defined, then a o b = a ^ b, in particular the right-hand side is well defined. 

• The partial ordering on °R induces a partial unary operation -1 (comple- 
mentation) and two partial binary operations ^ and v (meet and join) on °ft. 

2. The space of  decoherence functionals: A decoherence functional is 
a map d: ~)2 × ~.~ ~ C which satisfies for all et, ct', 13 ~ ~),R: 

• d(a,  ~) ~ R and d(oq cx) >- O. 
• d(et, 13) = d(13, ct)*. 
• d ( l ,  1) = 1. 
• d(O, et) = 0 for all ec 
• d(eq • o~2, 13) = d(oq, 13) + d(a2, 13) for all ~q, a2, 13 ~ 9~ for which 

ctl • et2 is well defined. 

3. The space lI of  general history propositions: 
• II is the quotient space of  the free lattice generated by °)3. by the 

congruence relation induced by the partial ordering on ~ (see Remark 10). 
• There exists an embedding T: °'it ---) 1I, i,e., -r(~) C 1t. 

4. The physical interpretation: 
• H cannot globally be mapped to ~ or to ~ ,  respectively. The physically 

interesting subsets of H are the 'allowed' Boolean sublattices H0 of H (see 
Definition 23) on which the canonical map ~ can be uniquely extended to 
a valuation B on Ho with values in ~2)2 such that for every u e 116 the value 
B(u) of this extension does not depend upon the particular 'allowed' Boolean 
lattice 116 chosen. 

• The decoherence functional induces a probability measure on the 
consistent (w.r.t. the decoherence functional) 'allowed' Boolean sublattices 
of  H. 

• On the 'allowed' Boolean sublattices of 1,t the decoherence functional 
defines a partial logical implication which allows one to make logical 
inferences. 

• The D-poset 0)Y~, ~ )  may be not unique. There may be other D-posets 
(9~', O ' )  containing ~ ( ~ )  such that the decoherence functionals can be 
extended to ~ ' -addi t ive  functionals on ~.~' x ~32'. It is possible to define 
'allowed' Boolean sublattices 116 of  H with respect to ~,~'. The decoherence 
functional induces a probability measure on the consistent 'allowed' Boolean 
sublattices 1~I6 of H. Moreover, the decoherence functional defines a partial 
logical implication on the Boolean sublattices 116 of lI. 

• There exist D-posets %U of effect histories isomorphic to ~ (e.g., the 
full D-poset of  effect histories) on which every decoherence functional induces 
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a probability measure, i.e., for which there exists a D-poset isomorphism ) :  
%U ~ ~ C ~(0~) mapping the space %U bijectively to the D-poset ~ such 
that the decoherence functional can be extended to ) (%U)  and such that 

d(~(a) G ~(b), ~(a)  • ~(b)) 

= d(~(a), ~(a)) + d(~(b), ~(b)) for all a, b ~ %U 

whenever the left-hand side is well defined. In particular, no consistency 
condition is required. Under certain additional conditions it is also possible 
to define an unambiguous partial implication on %U. 

• All probability measures defined on some consistent allowed Boolean 
sublattices of  1I defined with respect to some of the various D-posets ~J~, 
~J~' or on the D-posets of  histories %U have equal physical status in the 
theory and have to be treated egalitarianly. There seems to be no reason to 
prefer one class over the others. 

5. DISCUSSION AND CONCLUSION 

Above, we have defined the decoherence functional clp. s on pairs of  
homogeneous elements in 

(@(H),t ®N "'" ®N @(H),.) X (@(H)q ~)N "'" (~N ~(H)t n) 

by 

^ t r J" dp.s(a, b):= tr(C,o(v/a)pC,o(v/-b) ) 

and noticed that it cannot be extended to a q)~-additive functional on 

(@(H),, @3 "'" @~ @(H),.) X (@(H),, @3 "'" @9 ~(H), , )  

However, if we define a decoherence functional dp.s on pairs of square roots 
of homogeneous elements in 

(@(H) t l  @N " ' "  ~)N @(H) t . )  X (@(H) t  I @N " ' "  @N @(H)tn) 

by 

' t dp.s( ,,/~, v/~) := tr( 6",o( ,j~)pC,o(,fb) ) 

then 'ip.s can straightforwardly be extended to a @3-additive functional on 

((~(H)q ~ 3  " "  @3 (~(H),,,) × ((~(H), I @2 - "  @3 ~(H),,,) 

However, this appraoch and the one discussed in Section 4.3 are mathemati- 
cally equivalent since ~ O ~  v/b is well defined if and only if (a @3 b) ~t2 
is well defined for arbitrary a, b ~ @(H)q ~ " -  ~ 3  @(H), .  
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We add a few remarks about the physical significance of the sets of 
effect histories of order k > O. In such effect histories the interesting physical 
qualities are always repeated at k successive times. If we restrict ourselves 
to ordinary physical qualities represented by projection operators, then repeti- 
tion of some physical quality adds nothing new. This fact is mathematically 
expressed through the equation Pl G,~ P2 = P I G  P2 for all ct ~ Q, et > 0, 
and all projection operators P~ and P2 for which Pl • P2 is well defined. 
Hence, for histories of ordinary physical qualities all different D-poset struc- 
tures coincide. The situation that for effect histories there are different in- 
equivalent algebraic structures (D-poset structures) which have to be dealt 
with on the same footing is a new aspect of our generalized history approach. 

We have already mentioned above that the set of effects does not fulfill 
some requirements which are usually associated with the notion of property. 
In particular, effects can in general neither be measured ideally nor repeatedly. 
Moreover, in general the effect 1 - F cannot be interpreted as the property 
complementary to the property represented by the effect F. The same is true 
for, e.g., (1 - F~/2)2. Of course, in mathematical terms 1 - F and (1 - 
FI/2) 2 simply are the complements of F in the D-posets (~(H), G) or (~(H), 
@), respectively. However, if in a measurement of the effect F the measuring 
apparatus intended to measure F is not triggered, then we can say that the 
effect F has not occurred (trivial), but in general we cannot say that there is 
another complementary effect which has occurred instead. This is in particular 
true for effects F satisfying F --< 1/2 or 112 --< F. Therefore some authors 
claim that only regular effects whose spectrum extends both below as well 
as above the value 112 represent the (unsharp) properties of a quantum 
mechanical system (Busch et al., 1995). However, in the present work all 
effects are treated on the same footing and no ad hoc assumptions are added 
to single out effects representing the 'well-behaved' properties of a quantum 
mechanical system. 

In the literature of the standard consistent histories approach some 
authors find it necessary to consider various approximate consistency condi- 
tions in order to describe the classical or the quasiclassical properties of 
quantum mechanical systems. For instance, Omnbs associates 'quasi-projec- 
tors' with macroscopic regular cells in classical phase space. However, strictly 
speaking, histories involving quasi-projectors lie outside the mathematical 
framework of the standard consistent histories approach and it is a little bit 
disconcerting that the discussion of the (semi)classical limit of quantum 
mechanics in the consistent histories approach involves approximations of 
the fundamental concepts of the theory, even when it is of 'no practical 
importance.' This point may seem a bit pedantic at first, but I nevertheless 
believe that. it is also a quite unsatisfactory state of affairs in a physical 
theory. The solution of this problem should be clear now. Of course, quasi- 
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projectors are only a special sort of effects. Thus histories of quasi-projectors 
fit perfectly well in our generalized history theory and no ad hoc modifications 
of the basic concepts and principles are necessary in the discussion of the 
(semi)classical limit of quantum mechanics. 

Gell-Mann and Hartle encounter in their discussions of quasiclassical 
domains and measurement processes the situation that the consistency condi- 
tions and the probability sum rules for physically interesting histories are 
only approximately satisfied [see in particular Section II. 11 in Hartle (1991)]. 
The standard 'for all practical purposes' argument to justify the use of approxi- 
mate probabilities and approximate consistency conditions is that if the viola- 
tion is small enough, then no experiment could detect the discrepancy. Dowker 
and Kent (1996) stress that 'this seems a rather casual disruption of the 
mathematical structure of a fundamental theory.' Indeed, this question is not 
a question of practicability, but rather a question of principle. While admittedly 
approximations of any (reasonable) kind may be used for the computation 
of the (numerical) predictions of a theory, the basic principles and concepts 
of a theory should be formulated without invoking any kind of approximation. 
Otherwise the result would be a theory with semantically slippery rules of 
interpretation or without firm mathematical foundations. In any case our 
generalized history approach allows us to incorporate any kind of 'unsharp' 
physical quality into the theory at a fundamental level, regardless of whether 
it describes the quasiclassical domain of the universe or a measurement 
situation with limited resolution or other. Histories of generalized physical 
qualities and effect histories have a clear-cut status in the theory and thus 
concepts of approximate consistency are superfluous. Since these questions 
are not the main topic of the present work, we postpone a thorough discussion. 

The problem of interpreting a physical theory is of foremost importance 
in physical science, but especially difficult in the case of quantum theory. 
The axioms of every interpretation of a physical theory are always introduced 
by fiat. They are independent of and cannot be derived from the formalism. 
Thus it comes as no surprise that no agreement about the interpretation of 
quantum mechanics has been achieved. Nevertheless, even nowadays most 
physicists do not care too much about interpretational issues and simply rely 
on one of the diverse versions of the so-called Copenhagen interpretation of 
quantum mechanics. This interpretation is (as is well known) plagued with 
paradoxes and puzzles, such as the subject-object muddle and the actualiza- 
tion of facts as a consequence of our measurements. One of its basic claims 
is that main aspects of the microscopic world are in principle unanalyzable. 
Furthermore, it has been stressed by Oran,s (1992) that the Copenhagen 
interpretation is incomplete. The paradoxes of the Copenhagen interpretation 
of quantum mechanics cannot be resolved, but only be removed by another 
interpretation of quantum mechanics. 
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In the last decades there have been several attempts to construct a 
realistic and individual interpretation of quantum mechanics. In this work 
we studied two such attempts, namely the generalized operational quantum 
theory and the logical interpretation based on the concept of histories. We 
investigated their interrelationship and constructed a generalized logical inter- 
pretation. Both the generalized operational interpretation and the old logical 
interpretation can be viewed as special cases of our generalized logical 
interpretation. Our generalized Rule 2 is, however, only a first tentative step 
toward a consistent quantum reasoning involving generalized properties. 
Unfortunately, there is no general theory of coexistent sets of effects or 
generalized observables in quantum mechanics. With such a theory it would 
presumably be possible to considerably improve and generalize our approach 
and find a more natural definition of the notion of allowed Boolean lattice 
of effect histories than the one given in Definition 23. 

The interpretation of the consistent histories formalism underlying the 
present work differs significantly from the widespread interpretation suc- 
cinctly summarized under the name "Unknown Set Interpretation" by Kent 
(1995). First--and perhaps most importantly--we do not claim that nonrela- 
tivistic Hamiltonian quantum mechanics can be applied to the 'whole uni- 
verse'; see Note 5. Hence, we also do not adopt the view that exactly one 
history is realized and describes all of physics. Whether or not the classical 
and quasiclassical features of the observable world can be fully understood 
in the consistent histories formalism is an open problem. The most promising 
and most concrete description of the semiclassical limit of quantum mechanics 
in the framework of consistent histories has been given by Omnrs (1994, 
Chapter 6). Second, we assert that different consistent sets of histories are 
complementary in the sense described above and should be treated on the 
same footing (this is completely analogous to the assertion that position and 
momentum are complementary variables in the description of an elementary 
particle). Quantum theory ascribes probabilities to different possible events. 
The propensity that some particular event occurs depends upon the quantum 
system itself and upon the integral physical situation. Particularly, in measure- 
ment situations the result of the measurement depends upon the object under 
study and upon the mode of observation. At present no rule determining a 
preferred consistent set of histories for the universe (the Unknown Set) is 
known; in our interpretation such a rule will hardly be needed: instead for 
every quantum system and every 'physical situation' one needs a rule fixing 
the 'correct' consistent set. In measurement situations the choice of the 
consistent set is determined by the measuring apparatuses. 

There are three methodological arguments supporting the logical inter- 
pretation. Since according to the logical rule any allowed reasoning relates 
only properties belonging to some 'allowed' Boolean algebra and since there 
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can as a matter of principle never arise a paradoxical or inconsistent situation 
in a Boolean logic, all paradoxes and inconsistencies have been expelled 
from the language of quantum mechanics by one single simple rule. Thus 
the three arguments supporting the logical interpretation are in brief: 

• Nonrelativistic quantum mechanics with the generalized logical inter- 
pretation (and together with decoherence) gives unambiguous predic- 
tions for every conceivable experimental situation in nonrelativistic 
quantum mechanics. 

• Simplicity and economy of principles. 
• The logical interpretation is free of logical paradoxes. 

Examples illustrating the third point have been discussed by Omn~s (1994). 
However, at least one mystery remains. The microscopic world is unanalyz- 
able. Quantum physics as viewed by the logical interpretation provides no 
model for what 'actually happens.' 
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